Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T06:37:42.740Z Has data issue: false hasContentIssue false

Seminal cell-free DNA levels measured by PicoGreen fluorochrome are associated with sperm fertility criteria

Published online by Cambridge University Press:  07 March 2017

F. Costa
Affiliation:
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
F. Barbisan
Affiliation:
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
C.E. Assmann
Affiliation:
Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
N.K.F. Araújo
Affiliation:
Laboratório de Biogenômica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
A.R. de Oliveira
Affiliation:
Laboratório de Biogenômica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
J.P. Signori
Affiliation:
Laboratório de Biogenômica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
F. Rogalski
Affiliation:
Laboratório de Biogenômica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
B. Bonadiman
Affiliation:
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
M. S. Fernandes
Affiliation:
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
I.B.M. da Cruz*
Affiliation:
Laboratório Biogenômica. Universidade Federal de Santa Maria.Av Roraima 1000, Prédio 19, Santa Maria-RS 97105900, Brazil Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
*
All correspondence to: Ivana Beatrice Mânica da Cruz. Laboratório Biogenômica. Universidade Federal de Santa Maria. Av Roraima 1000, Prédio 19, Santa Maria-RS 97105900, Brazil. E-mail: [email protected]

Summary

Previous investigations suggested that elevated cell-free DNA (cfDNA) can indicate non-healthy states. However, the potential association between cfDNA seminal plasma levels and fertility sperm parameters has not yet been determined. Therefore, the present study evaluated the association between seminal cfDNA levels and sperm fertility criteria to determine the use of seminal cfDNA quantification. An in vivo protocol quantified cfDNA levels of semen samples obtained from 163 male patients using fluorescent PicoGreen dye staining. To confirm if semen cfDNA quantification is realistic, an in vitro complementary test was performed using three or four semen samples. The fresh sperm samples were exposed to paraquat that generates high levels of superoxide anion causing oxidative stress and cell mortality. The results showed significant association between dsDNA levels and several sperm fertility parameters, such as low viability and alterations of motility and morphology. The in vitro analysis confirmed the association between dsDNA levels and sperm viability. Together, these results suggest that dsDNA levels could be an important biomarker to test sperm fertility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bus, J.S. & Gibson, J.E. (1984). Paraquat: model for oxidant-initiated toxicity. Environ. Health Perspect. 55, 3746.Google Scholar
Cadona, F.C., Manica-Cattani, M.F., Machado, A.K., Oliveira, R.M., Flores, E.R.S., Assmann, C., Algarve, T.D. & Cruz, I.B.M. (2014). Genomodifier capacity assay: a non-cell test using dsDNA molecules to evaluate the genotoxic/genoprotective properties of chemical compounds. Anal. Methods 6, 8559–68.Google Scholar
Chou, J.S., Jacobson, J.D., Patton, W.C., King, A. & Chan, P.J. (2004). Modified isocratic capillary electrophoresis detection of cell-free DNA in semen. J. Assist. Reprod. Genet. 21, 397400.Google Scholar
Czamanski-Cohen, J., Sarid, O., Cwikel, J., Lunenfeld, E., Douvdevani, A., Levitas, E. & Har-Vardi, I. (2013). Increased plasma cell-free DNA is associated with low pregnancy rates among women undergoing IVF-embryo transfer. Reprod. Biomed. Online 1, 3641.Google Scholar
Halliwell, B. & Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 2, 231–55.CrossRefGoogle Scholar
Iommiello, V.M., Albani, E., Di Rosa, A., Marras, A., Menduni, F., Morreale, G., Levi, S.L., Pisano, B. & Levi-Setti, P.E. (2015). Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int. J. Endocrinol. 32, 1901–7.Google Scholar
Jentzsch, A.M., Bachmann, H., Fürst, P. & Biesalski, H.K. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 2092, 251–6.Google Scholar
Levine, R.L. (1983). Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J. Biol. Chem. 258, 11823–927.Google Scholar
Levy, M.S., Loptian, P., Kennedy, R.O., Lo-Yim, M.Y. & Shamlou, P.A. (2000). Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method. Nucleic Acids Res. 1, 28, 57.Google Scholar
Li, H.G., Huang, S.Y., Zhou, H., Liao, A.H. & Xiong, C.L. (2009). Quick recovery and characterization of cell-free DNA in seminal plasma of normozoospermia and azoospermia: implications for non-invasive genetic utilities. Asian J. Androl. 11, 703–9.Google Scholar
Shiva, M., Gautam, A.K., Verma, Y., Shivgotra, V., Doshi, H. & Kumar, S. (2011). Association between sperm quality, oxidative stress, and seminal antioxidant activity. Clin. Biochem. 4, 319324.Google Scholar
Swarup, V. & Rajeswari, M.R. (2007). Circulating (cell-free) nucleic acids-a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 581,795–9.Google Scholar
Swarup, V., Srivastava, A.K., Padma, M.V. & Rajeswari, M.R. (2011). Quantification of circulating plasma DNA in Friedreich's ataxia and spinocerebellar ataxia types 2 and 12. DNA Cell Biol. 6, 389–94.Google Scholar
Uribe, P., Boguen, R., Treulen, F., Sánchez, R. & Villegas, J.V. (2015). Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Mol. Hum. Reprod. 3, 237–43.Google Scholar
WHO (World Health Organization). (2010). WHO Laboratory Manual for the Examination of Human Semen and Sperm Cervical Mucus Interactions. Cambridge: Cambridge University Press 2.Google Scholar
Wu, T.L., Zhang, D., Chia, J.H., Tsao, K., Sun, C.F. & Wu, J.T. (2002). Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin. Chim. Acta 1, 7787.Google Scholar
Xie, G.S., Hou, A.R., Li, L.Y., Gao, Y.N. & Cheng, S.J. (2004). Quantification of plasma DNA as a screening tool for lung cancer. Chin. Med. J. (Engl.) 10, 1485–8.Google Scholar
Yan, L., Liu, J., Wu, S., Ji, G. & Gu, A. (2014). Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J. Assist. Reprod. Genet. 31, 549–54.Google Scholar
Yi, J., Zhang, Y., Zhang, Y., Ma, Y., Zhang, C., Li, Q., Liu, B., Liu, Z., Liu, J., Zhang, X., Zhuang, R. & Jin, B. (2014). Increased plasma cell-free DNA level during HTNV infection: correlation with disease severity and virus load. Viruses 7, 2723–34.Google Scholar
Zhang, W.D., Zhang, Z., Jia, L.T., Zhang, L.L., Fu, T., Li, Y.S., Wang, P., Sun, L., Shi, Y. & Zhang, H.Z. (2014). Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Mol. Med. Rep. 10, 1875–80.Google Scholar
Zhao, X., Huang, S., Luo, H., Wan, X., Gui, Y., Li, J. & Wu, D. (2014). Evaluation of vesicular stomatitis virus mutant as an oncolytic agent against prostate cancer. Int. J. Clin. Exp. Med. 7, 1204–13.Google Scholar
Zhu, G., Ye, X., Dong, Z., Lu, Y.C., Sun, Y., Liu, Y., McCormack, R., Gu, Y. & Liu, X. (2015). Highly sensitive droplet digital PCR method for detection of EGFR-activating mutations in plasma cell-free DNA from patients with advanced non-small cell lung cancer. J. Mol. Diagn. 3, 265–72.Google Scholar