Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:43:10.808Z Has data issue: false hasContentIssue false

The role of microtubules and inositol triphosphate induced Ca2+ release in the tyrosine phosphorylation of mitogen-activated protein kinase in extracts of Xenopus laevis oocytes

Published online by Cambridge University Press:  26 September 2008

N.S. Duesbery*
Affiliation:
Department of Zoology, University of Toronto, Toronto, Canada
Y. Masui
Affiliation:
Department of Zoology, University of Toronto, Toronto, Canada
*
N.S. Duesbery, Department of Zoology, University of Toronto, Toronto, Canada M5S 1A1. Telephone: (416) 978-3493. Fax; (416) 978-8532 e-mail: [email protected].

Summary

Microsomal fractions of Xenopus oocytes release preloaded 45Ca2+ when treated with inositol triphosphate (InsP3). The effective concentration of InsP3 required for half-maximal release (EC50) is 59 nM and maximal release occurs at ∼ 2 μM InsP3. Uptake and release of 45Ca2+ are not altered by the catalytic subunit of protein kinase A, dibutyrl cyclic adenosine monophosphate, protein kinase A peptide inhibitor or nocodazole. In contrast, taxol decreases the sensitivity of the microsomal fraction to InsP3, shifting the EC50 for InsP3-induced Ca2+ release from 59 to 259 nM. In lysates of oocytes, InsP3-induced Ca2+ release causes the tyrosine phorphorylation of a 42000 (Mr 42k) protein identified as 42k mitogen-activated protein (MAP) kinase. InsP3-induced tyrosine phosphorylation of MAP kinase is prevented by BAPTA and taxol, but not by nocodazole. Thus, microtubule polymerisation modifies InsP3-induced Ca2+ release, thereby inhibiting phosphorylation of MAP kinase.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balinsky, B.I., & Devis, R.J. (1963). Origin and differentiation of cytoplasmic structures in the oocytes of Xenopus laevis. Acta Embryol. Exp. Morphol. 6, 55108.Google Scholar
Baltus, E., Brachet, J., Hanocq-Quertier, J., & Hubert, E. (1973). Cytochemical and biochemical studies on progesterone-induced maturation in amphibian oocytes. Differentiation, 1, 127–43.Google Scholar
Brachet, J., Baltus, E., De Schutter, A., Hanocq, F., Hanocq-Quertier, J., Hubert, E., Iacobelli, S., Steinert, G. (1974). Biochemical changes during progesterone-induced maturation in Xenopus laevis oocytes. Mol. Cell Biochem. 3, 189.CrossRefGoogle ScholarPubMed
Chao, T-S.O., Byron, K.L., Lee, K.-M., Villereal, M., & Rosner, M.R. (1992). Activation of MAP kinases by calcium-dependent and calcium-independent pathways. J. Biol. Chem. 267, 19876–83.CrossRefGoogle ScholarPubMed
Chiba, K., Kado, R.T., & Jaffe, L.A. (1990). Development of calcium release mechanisms during starfish oocyte maturation. Dev. Biol. 140, 300–6.CrossRefGoogle ScholarPubMed
Cicirelli, M.F., Smith, L.D. (1985). Cyclic AMP levels during the maturation of Xenopus oocytes. Dev. Biol. 108, 254–8.CrossRefGoogle ScholarPubMed
Clapper, D.L., & Lee, H.C. (1985). Inositol trisphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates. J. Biol. Chem. 260, 13947–54.CrossRefGoogle ScholarPubMed
Ducibella, T., Kurasawa, S., Duffy, P., Kopf, G.S., & Schultz, R.M. (1993). Regulation of the polyspermy block in the mouse egg: maturation-dependent differences in cortical granule exocytosis and zona pellucida modifications induced by inositol 1,4,5-trisphosphate and an activator of protein kinase C. Biol. Reprod. 48, 1251–7.Google Scholar
Duesbery, N.S., Masui, Y. (1993). Changes in protein association with intracellular membranes of Xenopus laevis oocytes during maturation and activation. Zygote 1, 129–41.CrossRefGoogle ScholarPubMed
Duesbery, N.S., Masui, Y. (1996a). The roles of Ca2+ and microtubules in progesterone-induced germinal vesicle breakdown (GVBD) of Xenopus laevis oocytes. I. The requirement for Ca2+ mobilization. Submitted.CrossRefGoogle Scholar
Duesbery, N.S. & Masui, Y. (1996b). The roles of Ca2+ and microtubules in progesterone-induced germinal vesicle breakdown (GVBD) of Xenopus laevis oocytes. II. The synergic effects of microtubule depolymerization and Ca2+ release. Submitted.CrossRefGoogle Scholar
Dumont, J.N. (1972). Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–79.CrossRefGoogle ScholarPubMed
Elinson, R.P. (1985). Changes in levels of polymeric tubulin associated with activation and dorsoventral polarization of the frog egg. Dev. Biol. 109, 224–33.CrossRefGoogle ScholarPubMed
Fanburg, B., Gergely, J. (1965). Studies on adenosine trisphosphate-supported calcium accumulation by cardiac subcellular particles. J. Biol. Chem. 240, 2721–8.Google Scholar
Farnsworth, C.L., Freshney, N.W., Rosen, L.B., Ghosh, A., Greenberg, M.E., & Feig, L.A. (1995). Calcium activation of ras mediated by neuronal exchange factor RAS-GRF. Nature 376, 524–7.CrossRefGoogle ScholarPubMed
Ferrell, J.E. Jr, Wu, M., Gerhart, J.C., Martin, G.S. (1991). Cell cycle tyrosine phosphorylation of p34cdc2 and a micro-tubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell Biol. 11, 1965–71.Google Scholar
Fujiwara, T., Nakada, K., Shirakawa, H., Miyazaki, S. (1993). Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes. Dev. Biol. 156, 6979.Google Scholar
Gallo, C.J., Hand, A.R., Jones, T.L.Z., & Jaffe, L. (1995). Stimulation of Xenopus oocyte maturation by inhibition of the G-Protein αs subunit, a component of the plasma membrane and yolk platelet membranes. J. Cell Biol. 130, 275–84.Google Scholar
Gotoh, Y., Nishida, E., Matsuda, S., Shiina, N., Kosako, H., Shoikawa, K., Akiyama, T., Ohta, K., & Sakai, H. (1991). In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349, 251–4.CrossRefGoogle ScholarPubMed
Haccard, O., Lewellyn, A., Hartley, R.S., Erikson, E., & Maller, J.L. (1995). Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev. Biol. 168, 677–82.CrossRefGoogle ScholarPubMed
Han, J.-L., & Nuccitelli, R. (1990). Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. J. Cell Biol. 110, 1103–10.CrossRefGoogle ScholarPubMed
Heidemann, S.R., Kirschner, M.W. (1975). Aster formation in eggs of Xenopus laevis: induction by isolated basal bodies. J. Cell. Biol. 67, 105–17.CrossRefGoogle ScholarPubMed
Heidemann, S.R., & Kirschner, M.W. (1978). Induced formation of asters and cleavage furrows in oocytes of Xenopus laevis during in vitro maturation. J. Exp. Zool. 204, 431–44.CrossRefGoogle ScholarPubMed
Heidemann, S.R., Hamborg, M.A., Balasz, J.E., & Lindley, S. (1985). Microtubules in immature oocytes of Xenopus laevis. J. Cell Sci. 77, 129–41.Google Scholar
Jessus, C., Huchon, D., Ozon, R. (1986). Distribution of microtubules during the breakdown of the nuclear envelope of the Xenopus oocyte: an immunocytochemical study. Biol. Cell 56, 113–20.Google Scholar
Jessus, C., Thibier, C., Ozon, R. (1987). Levels of microtubules during the meiotic maturation of the Xenopus oocyte. J. Cell Sci. 87, 705–12.CrossRefGoogle ScholarPubMed
Jessus, C., Rime, H., Haccard, O., Van Lint, J., Goris, J., Merlevede, W., Ozon, R. (1991). Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Development 111, 813–20.CrossRefGoogle ScholarPubMed
Lohka, M.J., Maller, J.L. (1985). Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101, 518–23.CrossRefGoogle ScholarPubMed
Maller, J.L., Krebs, E.G. (1977). Progesterone stimulated meiotic cell division in Xenopus oocytes. J. Biol. Chem. 252, 1712–18.CrossRefGoogle ScholarPubMed
Maller, J.L., Butcher, F.R., Krebs, E.G. (1979). Early effect of progesterone on levels of cyclic adenosine 3':5'-monophosphate in Xenopus oocytes. J. Biol. Chem. 254, 579–82.Google Scholar
McDonald, K. (1984). Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J. Ultrastruct. Res. 86, 107–18.CrossRefGoogle Scholar
Nebreda, A.R., Hunt, T. (1993). The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J. 12, 1979–86.CrossRefGoogle Scholar
Posada, J., Yew, N., Ahn, N.G., Vande Woude, G.F., & Cooper, J.A. (1993). Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. cell. Biol. 13, 2546–53.Google ScholarPubMed
Ray, L.B., & Sturgill, T.W. (1987). Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84, 1502–6.CrossRefGoogle ScholarPubMed
Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J., Vande Woude, G.F.. (1988). Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–25.CrossRefGoogle ScholarPubMed
Schiff, P.B., Fant, J., & Horwitz, S.B. (1979). Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–7.CrossRefGoogle ScholarPubMed
Shibuya, E.k., & Ruderman, J.V. (1993). Mos induces the in vitro activation of MAP kinases in lysates of frog oocytes and mammalian somatic cells. Mol. Biol. Cell 4, 781–90.CrossRefGoogle Scholar
Shibuya, E.K., Polverino, A.J., Chang, E., Wigler, M., Ruderman, J.V. (1992). Oncogenic ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes, Proc. Natl. Acad. Sci. USA 89, 9831–5.Google Scholar
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., & Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 7685.Google Scholar
Stith, B.J., Goalstone, M., Silva, S., & Jaynes, C. (1993). Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol. Biol. Cell 4, 435–43.Google Scholar
Sturgill, T.W., Ray, L.B., Erikson, E., & Maller, J.L. (1988). Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334, 715–18.CrossRefGoogle ScholarPubMed
Supattapone, S., Danoff, S.K., Theibert, A., Joseph, S.K., Steiner, J., Snyder, S.H. (1988). Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. USA 85, 8747–50.Google Scholar
Terasaki, M., Chen, L.B., & Fujiwara, K. (1986). Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell. Biol. 103, 1557–68.CrossRefGoogle ScholarPubMed
Wasserman, W.J., & Masui, Y. (1975). Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus laevis. Exp. Cell. Res. 91, 381–8.Google Scholar
Zhang, S.C., Masui, Y. (1992). Activation of Xenopus laevis eggs in the absence of intracellular Ca activity by the protein phosphorylation inhibitor, 6-dimethylaminopurine (6-DMAP). J. Exp. Zool. 262, 317–29.Google Scholar