Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T17:15:46.220Z Has data issue: false hasContentIssue false

A retrospective model of oocyte competence: global mRNA and housekeeping transcripts are not associated with in vitro developmental outcome

Published online by Cambridge University Press:  27 April 2009

Fernando Henrique Biase*
Affiliation:
USP-FZEA – Departamento de Ciências Básicas, Rua Duque de Caxias Norte, 225, Pirassununga–SPBrazil. Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil. Departamento de Genética, Faculdade de Medicina de Ribeirão Preto–Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
Lúcia Martelli
Affiliation:
Departamento de Genética, Faculdade de Medicina de Ribeirão Preto–Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
Giovana Krempel Fonseca Merighe
Affiliation:
Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil.
Weruska Karyna Freitas Santos Biase
Affiliation:
Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil.
Moyses Miranda
Affiliation:
Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil.
Lawrence Charles Smith
Affiliation:
Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil. Centre de Recherche en Reproducion Animale, Faculté de Médicine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
Flávio Vieira Meirelles
Affiliation:
USP-FZEA – Departamento de Ciências Básicas, Rua Duque de Caxias Norte, 225, Pirassununga–SPBrazil. Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos–Universidade de São Paulo, Pirassununga, São Paulo, Brasil.
*
All correspondence to: Fernando H. Biase or Flávio Vieira Meirelles. USP-FZEA – Departamento de Ciências Básicas, Rua Duque de Caxias Norte, 225, Pirassununga–SPBrazil. Tel: +55 19 3565 4112. Fax: +55 19 3565 4117. e-mail: [email protected] or [email protected]

Summary

Oocyte developmental competence depends on maternal stores that support development throughout a transcriptionally silent period during early embryogenesis. Previous attempts to investigate transcripts associated with oocyte competence have relied on prospective models, which are mostly based on morphological criteria. Using a retrospective model, we quantitatively compared mRNA among oocytes with different embryo development competence. A cytoplasm biopsy was removed from in vitro matured oocytes to perform comparative analysis of amounts of global polyadenylated (polyA) mRNA and housekeeping gene transcripts. After parthenogenetic activation of biopsied oocytes, presumptive zygotes were cultured individually in vitro and oocytes were classified according to embryo development: (i) blocked before the 8-cell stage; (ii) blocked between the 8-cell and morulae stages; or (iii) developed to the blastocyst stage. Sham-manipulated controls confirmed that biopsies did not alter development outcome. Total polyA mRNA amounts correlate with oocyte diameter but not with the ability to develop to the 8-cell and blastocyst stages. The last was also confirmed by relative quantification of GAPDH, H2A and Hprt1 transcripts. In conclusion, we describe a novel retrospective model to identify putative markers of development competence in single oocytes and demonstrate that global mRNA amounts at the metaphase II stage do not correlate with embryo development in vitro.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bettegowda, A., Lee, K.B. & Smith, G.W. (2008). Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod. Fertil. Dev. 20, 4553.Google Scholar
Biase, F. H., Merighe, G. K., Santos-Biase, W. K. F., Martelli, L. & Meirelles, F. V. (2008). Global poly (A) mRNA expression profile measured in individual bovine oocyte and cleavage embryos. Zygote 16, 2938.Google Scholar
Bilodeau-Goeseels, S. & Panich, P. (2002). Effects of oocyte quality on development and transcriptional activity in early bovine embryos. Anim. Reprod. Sci. 71, 143–55.Google Scholar
Blondin, P. & Sirard, M.A. (1995). Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol. Reprod. Dev. 41, 5462.Google Scholar
El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M.A., Schellander, K. & Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 8496.CrossRefGoogle ScholarPubMed
Fair, T., Hyttel, P. & Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–42.CrossRefGoogle ScholarPubMed
Fair, T., Hyttel, P., Greve, T. & Boland, M. (1996). Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle. Mol. Reprod. Dev. 43, 503–12.Google Scholar
Gandolfi, F., Luciano, A.M., Modina, S., Ponzini, A., Pocar, P., Armstrong, D.T. & Lauria, A. (1997). The in vitro developmental competence of bovine oocytes can be related to the morphology of the ovary. Theriogenology 48, 1153–60.Google Scholar
Lequarre, A.S., Traverso, J.M., Marchandise, J. & Donnay, I. (2004). Poly(A) RNA is reduced by half during bovine oocyte maturation but increases when meiotic arrest is maintained with CDK inhibitors. Biol. Reprod. 71, 425–31.CrossRefGoogle ScholarPubMed
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25, 402–8.CrossRefGoogle ScholarPubMed
Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P. & Boland, M.P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–67.Google Scholar
Lonergan, P., Monaghan, P., Rizos, D., Boland, M.P. & Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Mol. Reprod. Dev. 37, 4853.Google Scholar
Memili, E. & First, N.L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8, 8796.Google Scholar
Misirlioglu, M., Page, G.P., Sagirkaya, H., Kaya, A., Parrish, J.J., First, N.L. & Memili, E. (2006). Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc. Natl. Acad. Sci. USA 103, 18905–10.CrossRefGoogle ScholarPubMed
Pavlok, A., Lucas-Hahn, A. & Niemann, H. (1992). Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Mol. Reprod. Dev. 31, 63–7.CrossRefGoogle ScholarPubMed
Picton, H., Briggs, D. & Gosden, R. (1998). The molecular basis of oocyte growth and development. Mol. Cell Endocrinol. 145, 2737.CrossRefGoogle ScholarPubMed
Plante, L., Plante, C., Shepherd, D.L. & King, W.A. (1994). Cleavage and 3H-uridine incorporation in bovine embryos of high in vitro developmental potential. Mol. Reprod. Dev. 39, 375–83.CrossRefGoogle ScholarPubMed
Ramakers, C., Ruijter, J.M., Deprez, R.H. & Moorman, A.F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Letts. 339, 6266.Google Scholar
Revel, F., Mermillod, P., Peynot, N., Renard, J.P. & Heyman, Y. (1995). Low developmental capacity of in vitro matured and fertilized oocytes from calves compared with that of cows. J. Reprod. Fertil. 103, 115–20.CrossRefGoogle ScholarPubMed
Tervit, H.R., Whittingham, D.G. & Rowson, L.E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–7.Google Scholar
Vajta, G., Peura, T.T., Holm, P., Paldi, A., Greve, T., Trounson, A.O. & Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol. Reprod. Dev. 55, 256–64.Google Scholar
Wrenzycki, C., Herrmann, D. & Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68 (Suppl. 1), S77S83.CrossRefGoogle ScholarPubMed
Yang, X., Kubota, C., Suzuki, H., Taneja, M., Bols, P.E. & Presicce, G.A. (1998). Control of oocyte maturation in cows – biological factors. Theriogenology 49, 471–82.CrossRefGoogle ScholarPubMed
Yoon, S-J., Kim, K-H., Chung, H-M., Choi, D-H., Lee, W-S., Cha, K-Y. & Lee, K-A. (2006). Gene expression profiling of early follicular development in primordial, primary, and secondary follicles. Fertil. Steril. 85, 193203.CrossRefGoogle ScholarPubMed