Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T20:10:23.590Z Has data issue: false hasContentIssue false

Post-hatching development of bovine embryos in vitro: the effects of tunnel preparation and gender

Published online by Cambridge University Press:  23 March 2011

Grazieli Marinheiro Machado
Affiliation:
Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica – PqEB – Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF - Brazil – 70.770-917. College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
Ester Siqueira Caixeta
Affiliation:
Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica – PqEB – Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF - Brazil – 70.770-917. College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
Carolina Madeira Lucci
Affiliation:
College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
Rodolfo Rumpf
Affiliation:
Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica – PqEB – Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF - Brazil – 70.770-917. College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
Maurício Machaim Franco
Affiliation:
Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica – PqEB – Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF - Brazil – 70.770-917. College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
Margot Alves Nunes Dode*
Affiliation:
Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF – Brazil – 70.770-917. College of Agriculture and Veterinary, University of Brasília, Campus Universitário Darcy Ribeiro – Asa Norte, Instituto Central de Ciências Ala Sul–Caixa Postal 4.508, Brasília, DF – Brazil, CEP: 70.910-970.
*
All correspondence to: Margot Alves Nunes Dode. Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF – Brazil – 70.770-917. Tel. +55 61 34484659. Fax: +55 61 33403658. e-mail: [email protected].

Summary

The objective of this study was to compare morphological characteristics, kinetics of development, and gene expression of male and female IVP embryos that were cultured until day (D)15 (fertilization = D0), using either phosphate-buffered saline (PBS) or Milli-Q water (MQW) to dilute the agarose gel used for tunnel construction. On D11, embryos (n = 286) were placed in agarose gel tunnels diluted in PBS and MQW. Embryos were evaluated for morphology, and embryo size was recorded on D11, D12.5, D14 and D15. Then, embryos were sexed and used for gene expression analyses (G6PD, GLUT1, GLUT3, PGK1, PLAC8, KRT8, HSF1 and IFNT). The percentage of elongated embryos at D15 was higher (p < 0.05) in the PBS (54%) than in the MQW (42%) gel. However, embryos produced in MQW were bigger (p < 0.05) and had a lower expression of GLUT1 (p = 0.08) than those cultured in PBS. There was a higher proportion of male than female embryos at D15 in both treatments, MQW (65% vs. 35%; p < 0.05) and PBS (67% vs. 33%; p < 0.05); however, embryo size was not significantly different between genders. Moreover, D15 female embryos had greater expression of G6PD (p = 0.05) and KRT8 (p = 0.03) than male embryos. In conclusion, the diluent used for tunnel construction affected embryo development in the post-hatching development (PHD) system, and the use of MQW was the most indicative measure for the evaluation of embryo quality. Male and female embryos cultured from D11 to D15, either in an MQW or PBS agarose gel, demonstrated similar development but different gene expression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augustin, R., Pocar, P., Navarrete-Santos, A., Wrenzycki, C., Gandolfi, F., Niemann, H. & Fischer, B. (2001). Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol. Reprod. Dev. 60, 370–6.CrossRefGoogle ScholarPubMed
Balasubramanian, S., Son, W.J., Mohana Kumar, B., Ock, S.A., Yoo, J.G., Im, G.S., Choe, S.Y. & Rho, G.J. (2007). Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology 68, 265–75.CrossRefGoogle ScholarPubMed
Bertolini, M., Beam, S.W., Shim, H., Bertolini, L.R., Moyer, A.L., Famula, T.R. & Anderson, G.B. (2002). Growth, development, and gene expression by in vivo- and in vitro-produced day 7 and 16 bovine embryos. Mol. Reprod. Dev. 63, 318–28.CrossRefGoogle ScholarPubMed
Block, J., Fischer-Brown, A.E., Rodina, T.M., Ealy, A.D. & Hansen, P.J. (2007). The effect of in vitro treatment of bovine embryos with IGF-1 on subsequent development in utero to day 14 of gestation. Theriogenology 68, 153–61.CrossRefGoogle ScholarPubMed
Bondiolli, K.R., Ellis, S.B., Pryor, J.H., Williams, M.W. & Harpold, M.M. (1989). The use of male-specific chromosomal DNA fragments to determine the sex of bovine preimplantation embryos. Theriogenology 41, 95104.CrossRefGoogle Scholar
Brandão, D.O., Hyttel, P., Lovendahl, P., Rumpf, R., Stringfellow, D. & Callesen, H. (2004). Post-hatching development: a novel system for extended in vitro culture of bovine embryos. Biol. Reprod. 71, 2048–55.CrossRefGoogle ScholarPubMed
Carolan, C., Lonergan, P.K. & Mermillod, P. (1996). In vitro production of bovine embryos using individual oocytes. Mol. Reprod. Dev. 45, 145–50.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Clemente, M., de la Fuente, J., Fair, T., Al Naib, A., Gutierrez-Adan, A., Roche, J.F., Rizos, D. & Lonergan, . (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138, 507–17.CrossRefGoogle ScholarPubMed
Corrêa, G.A., Rumpf, R., Mundim, T.C., Franco, M.M. & Dode, M.A. (2008). Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim. Reprod. Sci. 104, 132–42.CrossRefGoogle ScholarPubMed
De La Fuente, R., Hahnel, A., Basrur, P.K. & King, W.A. (1999). X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol. Reprod. 60, 769–75.CrossRefGoogle Scholar
de Oliveira, A.T., Lopes, R.F. & Rodrigues, J.L. (2005). Gene expression and developmental competence of bovine embryos produced in vitro under varying embryo density conditions. Theriogenology 64, 1559–72.Google Scholar
Ellis, S.B., Bondiolli, K.W. & Williams, M.E. (1988). Sex determination of bovine embryos using male-specific DNA probes. Theriogenology 29, 242.CrossRefGoogle Scholar
Ferreira, A.R., Machado, G.M., Diesel, T.O., Carvalho, J. O., Rumpf, R., Melo, E.O., Dode, M.A.N. & Franco, M.M. (2010). Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryo. Mol. Reprod. Dev. 77, 615–21.Google Scholar
Fischer-Brown, A.E., Lindsey, B.R., Ireland, F.A., Northey, D.L., Monson, R.L., Clark, S.G., Wheeler, M.B., Kesler, D.J., Lane, S.J., Weigel, K.A. & Rutledge, J.J. (2004). Embryonic disc development and subsequent viability of cattle embryos following culture in two media under two oxygen concentrations. Reprod. Fert. Dev. 16, 787–93.Google Scholar
Fukui, Y., Kikuchi, Y., Kondo, H. & Mizushima, S. (2000). Fertilizability and developmental capacity of individuality culture bovine oocytes. Theriogenology 53, 1553–65.CrossRefGoogle ScholarPubMed
Garner, D.K. (2008). Dissection of culture media for embryos: the most important and less important components and characteristic. Reprod. Fert. Dev. 20, 918.CrossRefGoogle Scholar
Gutiérrez-Adán, A., Oter, M., Martínez-Madrid, B., Pintado, B. & De La Fuente, J. (2000). Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol. Reprod. Dev. 55, 146–51.Google Scholar
Gutiérrez-Adán, A., Lonergan, P., Rizos, D., Ward, F.A., Boland, M.P., Pintado, B. & De La Fuente, J. (2001). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 55, 1117–25.Google Scholar
Gutiérrez-Adán, A., Rizos, D., Fair, T., Moreira, P.N., Pintado, B., De La Fuente, J., Boland, M.P. & Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–8.CrossRefGoogle ScholarPubMed
Harvey, A.J, Kind, K.L., Pantaleon, M., Armstrong, D.T. & Thompson, J.G. (2004). Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71, 1108–19.CrossRefGoogle ScholarPubMed
Hendricksen, P.J., Vos, P.L., Steenweg, W.N., Bevers, M.M. & Dieleman, S.J. (2000). Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology 53, 1120.CrossRefGoogle Scholar
Holm, P., Booth, P.J., Schimidt, M.H., Greve, T. & Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum proteins. Theriogenology 52, 683700.CrossRefGoogle ScholarPubMed
Jaquemar, D., Kupriyanov, S., Wankell, M., Avis, J., Benirschke, K., Baribault, H. & Oshima, R.G. (2003). Keratin 8 protection of placental barrier function. J. Cell Biol. 161, 749–56.CrossRefGoogle ScholarPubMed
Khurana, N.K. & Niemann, H. (2000a). Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology 54, 741–56.Google Scholar
Khurana, N.K. & Niemann, H. (2000b). Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 62, 847–56.Google Scholar
Latham, K.E. (1996). X chromosome imprinting and inactivation in the early mammalian embryo. Trends Genet. 12, 134–7.CrossRefGoogle ScholarPubMed
Lazzari, G., Wrenzycki, C., Herrman, D., Duchi, R., Kruip, T., Niemann, H. & Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced are related to the large offspring syndrome. Biol. Reprod. 67, 767–75.Google Scholar
Lonergan, P & Fair, T. (2008). In vitro-produced bovine embryos—dealing with the warts. Theriogenology 69, 1722.Google Scholar
Lonergan, P., Rizos, D., Gutiérrez-Adán, A., Moreira, P.M., Pintado, B., De La Fuente, J. & Boland, M.P. (2003). Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol. Reprod. 69, 1424–31.Google Scholar
Lonergan, P., Fair, T., Corcoran, D. & Evans, A.C.O. (2006). Effect of culture environment on gene expression and developmental characteristic in IVF-derived embryos. Theriogenology 65, 137–52.CrossRefGoogle ScholarPubMed
Machado, G.M., Carvalho, J.O., Siqueira Filho, E., Caixeta, E.S., Franco, M.M., Rumpf, R. & Dode, M.A.N. (2009). Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 71, 1289–97.CrossRefGoogle ScholarPubMed
Maddox-Hyttel, P., Alexopoulos, N.I., Vajta, G., Lewis, I., Rogers, P., Cann, L., Callesen, H., Tveden-Nyborg, P. & Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–23.Google Scholar
Morton, K.M., Herrmann, D., Sieg, B., Struckmann, C., Maxwell, W.M.C., Raht, D., Evans, G., Lucas-Hahn, A., Niemann, H. & Wrenzycki, C. (2007). Altered mRNA expression patterns in bovine blastocysts after fertilization in vitro using flow-cytometrically sex-sorted sperm. Mol. Reprod. Dev. 74, 931–40.CrossRefGoogle ScholarPubMed
Narayanan, J., Xiong, J.Y. & Liu, X.Y.Determination of agarose gel pore size: absorbance measurements vis à vis other techniques. (2006). J. Phys. Conf. Ser. 28, 83–6.CrossRefGoogle Scholar
Okamoto, I., Otte, A.P., David Allis, C., Reinberg, D. & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–9.Google Scholar
Parrish, J.J., Krogenaes, A. & Susko-Parrish, J.L. (1995). Effect of bovine sperm separation by either swim-up and Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859–69.Google Scholar
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29, 2002–7.Google Scholar
Pfister-Genskow, M., Myers, C., Childs, L.A., Lacson, J.C., Patterson, T., Betthauser, J.M., Goueleke, P.J., Koppang, R.W., Lange, G., Fisher, P, Watt, S.R., Forsberg, E.J., Zheng, Y., Leno, G.H., Schultz, R.M., Liu, B., Chetia, C., Yang, X. & Hoeschele, I., Eilertsen, K.J. (2005). Identification of differentially expressed genes in individually bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod. 71, 546–55.CrossRefGoogle Scholar
Ramakers, C., Ruijter, J.M., Deprez, R.H. & Moorman, A.F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–6.Google Scholar
Reece, W.O. (1996). Fisiologia dos Animais Domésticos, In Propriedades físico-químicas das soluções (eds Swenson, M.J. & Reece, W.O.), pp. 17. Rio de Janeiro, Brazil: Guanabara Koogan S.A.Google Scholar
Rheingantz, M.G.T., Pegoraro, L.M.C., Dellagostin, O.A., Pimentel, A.M., Bernardi, M.L. & Deschamps, J.C. (2004). Proporção macho: fêmea de embriões bovinos cultivados na presença ou ausência de glicose após FIV com espermatozóides selecionados por swim-up ou Gradiente de Percoll. Braz. J. Vet. Res. Anim. Sci. 41, 32–9.CrossRefGoogle Scholar
Rizos, D., Lonergan, P., Boland, M. P., Arroyo-Gárcia, R., Pintado, B., Fuente, J. & Gutiérrez-Adán, A. (2002). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture system: implications for blastocysts quality. Biol. Reprod. 66, 589–95.CrossRefGoogle Scholar
Schmidt, M. (2007). Perinatal death associated with ET, IVP, and cloning in cattle. Acta Vet. Scand. 49, S13.Google Scholar
Tiffin, G.J., Rieger, D., Betteridge, K.J., Yadav, B.R. & King, W.A. (1991). Glucose and glutamine metabolism in preattachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–32.CrossRefGoogle ScholarPubMed
Vajta, G., Alexopoulus, N. & Callesen, H. (2004). Rapid growth and elongation of bovine blastocysts in vitro in a three-dimensional gel system. Theriogenology 7, 1253–63.Google Scholar
van Wagtendonk-de Leeuw, A.M. (2006). Ovum pick up and in vitro production in the bovine after use in several generations: a 2005 status. Theriogenology 65, 914–25.CrossRefGoogle ScholarPubMed
Vandesompele, J., Preter, K.D., Pattyn, F., Poppe, B., Roy, N.V., Paepe, A.D. & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen. Biol. 3, 111.Google Scholar
Vejlsted, M., Du, Y., Vajta, G. & Maddox-Hytttel, P. (2006). Post-hatching development of porcine and bovine embryo – defining criteria for expected development in vivo and in vitro. Theriogenology 65, 153–6.Google Scholar