Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:57:58.145Z Has data issue: false hasContentIssue false

Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells

Published online by Cambridge University Press:  01 February 2007

S-X. Zhu
Affiliation:
Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, ZhongGuanCun Street, South Road No. 3#, Beijing 100080, China.
Z. Sun
Affiliation:
Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, ZhongGuanCun Street, South Road No. 3#, Beijing 100080, China.
J-P. Zhang*
Affiliation:
Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, ZhongGuanCun Street, South Road No. 3#, Beijing 100080, China.
*
All correspondence to: Jing-Pu Zhang., Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China. Tel: +86 10 62551218. Fax: +86 10 62551951. e-mail: [email protected]

Summary

Livestock embryo production in in vitro systems has been highlighted due to the emergence of interest in embryo stem cells (ESC). ESC potency and their wide potential applications have been recognized in medicine, fundamental research fields and commercial markets due to ESC totipotency or pluripotency and self-renewal. Ovine ESC probably is a useful technical platform for transgenic livestock and animal cloning, but ESC lines have not yet been founded because of difficulties in ESC isolation and the lack of blastula materials. We have established an IVP (in vitro production) system in our laboratory, including in vitro maturation, in vitro fertilization and in vitro culture, to produce sheep blastula using fresh ovaries and testes collected from livestock production. This system can achieve rates of mature eggs and blastulas of 65 and 50% respectively, and can provide enough blastulas for ICM (inner cell mass) isolation. Furthermore, ESC-like clones were isolated from the ICM on ovine embryonic fibroblast (OEF) feeder cells and in ES-DMEM supplemented with the cell factors LIF and SCF, and these survived to the third passage, which was primarily identified by AKP staining and morphology. This work provides a basis for ovine ESC isolation and foundation of ESC lines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, D.T., Kotaras, P.J. & Earl, C.R. (1997). Advances in production of embryos in vitro from juvenile and prepubertal oocytes from the calf and lamb. Reprod. Fertil. Dev. 9, 333–9.CrossRefGoogle ScholarPubMed
Boquest, A.C., Abeydeera, L.R., Wang, W.H. & Day, B.N. (1999). Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro. Theriogenology 51, 1311–9.CrossRefGoogle ScholarPubMed
Chen, D-Y. (2000). Biology of fertilization. In Fertilization Mechanisms and Reproduction Engineering, 1st edn, pp. 32, 317–50. Beijing: Science Press.Google Scholar
Chen, L.R., Shiue, Y.L., Bertolini, L., Medrano, J.F., BonDurant, R.H. & Anderson, G.B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195212.CrossRefGoogle ScholarPubMed
Cheng, W.T.K. & Polge, C. (1986). In vitro fertilization of pig and sheep oocytes matured in vivo and in vitro. Theriogenology 25, 157.CrossRefGoogle Scholar
Cherny, R.A., Stokes, T.M., Merei, J., Lom, L., Brandon, M.R. & Williams, R.L. (1994). Strategies for the isolation and characterization of bovine embryonic stem cells. Reprod. Fertil. Dev. 6, 569–75.CrossRefGoogle ScholarPubMed
Doetschman, T., Williams, P. & Maeda, N. (1988). Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127, 224–7.CrossRefGoogle ScholarPubMed
Evans, M.J. & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–6.CrossRefGoogle ScholarPubMed
Graves, K.H. & Moreadith, R.W. (1993). Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol. Reprod. Dev. 36, 424–33.CrossRefGoogle ScholarPubMed
Hong, Y., Winkler, C. & Schartl, M. (1996). Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech. Dev. 60, 3344.CrossRefGoogle ScholarPubMed
Lavon, N. & Benvenisty, N. (2003). Differentiation and genetic manipulation of human embryonic stem cells and the analysis of the cardiovascular system. Trends Cardiovasc. Med. 13, 4752.CrossRefGoogle ScholarPubMed
Martin, G. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–8.CrossRefGoogle ScholarPubMed
Mitalipova, M., Beyhan, Z. & First, N.L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 5967.CrossRefGoogle ScholarPubMed
Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. (2003). Manipulating the Mouse Embryo, A Laboratory Manual, and pp. 175, 181–5. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Park, J.H., Kim, S.J., Oh, E.J., Moon, S.Y., Roh, S.I., Kim, C.G. & Yoon, H.S. (2003). Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol. Reprod. 69, 2007–14.CrossRefGoogle ScholarPubMed
Pau, K.Y. & Wolf, D P. (2004). Derivation and characterization of monkey embryonic stem cells. Reprod. Biol. Endocrinol. 2, 41. (http://www.rbej.com/content/2/141).Google Scholar
Qin, P-Ch., Li, Y-L., Tan, J-H., Luo, K., Tian, W-Y. & Li, G-P. (2001). Embryology of Mammalian, 1st edn, pp. 444–51. Beijing: Science Press.Google Scholar
Saito, S., Ugai, H., Sawai, K., Yamamoto, Y., Minamihashi, A., Kurosaka, K., Kobayashi, Y., Murata, T., Obata, Y. & Yokoyama, K. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett. 531, 389–96.CrossRefGoogle ScholarPubMed
Schmitt, T.M., de Pooter, R.F., Gronski, M.A., Cho, S.K., Ohashi, P.S. & Zuniga-Pflucker, J.C. (2004). Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat. Immunol. 5, 410–7.CrossRefGoogle ScholarPubMed
Shamblott, M.J., Axelman, J., Wang, S.P., Bugg, E.M., Littlefield, J.W., Donovan, P.J., Blumenthal, P.D., Huggins, G.R. & Gearhart, J.D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13726–31.CrossRefGoogle ScholarPubMed
Spector, D.L., Goldman, R.D. & Leiwand, L.A. (1998). Cell: A Laboratory Manual, pp. 4952. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sun, L., Bradford, C.S., Ghosh, C., Collodi, P. & Barnes, D.W. (1995). ES-like cell cultures derived from early zebrafish embryos. Mol. Mar. Biol. Biotechnol. 4, 193–9.Google ScholarPubMed
Thomson, J.A. & Marshall, V.S. (1998). Primate embryonic stem cells. Curr. Topics Dev. Biol. 38, 133–65.CrossRefGoogle ScholarPubMed
Thomson, J.A., Itskovitzeldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. & Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 145–7.CrossRefGoogle ScholarPubMed
Tremoleda, J.L., Stout, T.A.E., Lagutina, I., Lazzari, G., Bevers, M.M., Colenbrander, B. & Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics and blastocyst capsule formation, Biol. Reprod. 69, 18951906.CrossRefGoogle ScholarPubMed
Walker, S.K., Heard, T.M. & Seamark, F. (1992). In vitro culture of sheep embryos without co-culture: success and perspective. Theriogenology 37, 111–26.CrossRefGoogle Scholar
Watabe, T., Nishihara, A., Mishima, K., Yamashita, J., Shimizu, K., Miyazawa, K., Nishikawa, S. & Miyazono, K. (2003). TGF-beta receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J. Cell Biol. 163, 1303–11.CrossRefGoogle ScholarPubMed
Yoshida, M., Ishizaki, Y. & Kawagishi, H. (1990). Blastocyst formation by pig embryos resulting from in vitro fertilization of oocytes matured in vitro. J. Reprod. Fert. 88, 18.CrossRefGoogle ScholarPubMed