Article contents
Orexin A promotes progesterone secretion in luteinized granulose cells of Mongolian Ovis aries ovary by PRRT2 and ABCG1 genes
Published online by Cambridge University Press: 03 March 2021
Summary
To study the role of orexin A in the reproductive regulation of Mongolian sheep, ovine ovarian granulosa cells were cultured in vitro. The cells were divided into groups after luteinization, the experimental group was given orexin A and the transcriptome was sequenced together with that of the control group. The different genes related to reproduction were screened out. qRT-PCR, western blot and enzyme-linked immunosorbent assay (ELISA) were used to verify the selected genes and detect the effect on progesterone secretion. In total, 123 differentially expressed genes were obtained by sequencing. Six genes with high expression related to reproduction (PRRT2, ABCG1, SOX4, TBX3, ID1 and ATP8) were screened. The results of qRT-PCR were consistent with those of sequencing; western blot and ELISA were used to verify the protein levels of steroidogenic acute regulatory protein (StAR) and its related PRRT2 and ABCG1, and to detect their effect on progesterone secretion. Validation results were consistent with those of qRT-PCR and sequencing. The experimental group was given orexin A and compared with the control group. Expression of PRRT2 protein was significantly increased (P < 0.05), ABCG1 protein expression was significantly decreased (P < 0.05), StAR expression was significantly increased (P < 0.05), and progesterone secretion was significantly increased (P < 0.05). The results showed that orexin A promoted the expression of StAR by upregulating PRRT2 and downregulating ABCG1, therefore affecting secretion of progesterone. Gene expression characteristics of orexin A affecting progesterone secretion were preliminarily explored; this study provides a theoretical basis for further study on signalling pathways and reproductive regulation in Mongolian sheep.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 2
- Cited by