Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:19:25.541Z Has data issue: false hasContentIssue false

Oocyte morphology and embryo morphokinetics in an intra-cytoplasmic sperm injection programme. Is there a relationship?

Published online by Cambridge University Press:  07 March 2017

Azita Faramarzi
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Mohammad Ali Khalili*
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Sareh Ashourzadeh
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Afzalipour Clinical Center for Infertility, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
*
All correspondence to: Mohammad Ali Khalili. Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel: +98 35 38247085-6. E-mail: [email protected]

Summary

The aim was to investigate the relationship between the morphological parameters of metaphase II (MII) oocytes with morphokinetic variables of embryos following an intra-cytoplasmic sperm injection (ICSI) procedure. Morphokinetic behaviour and abnormal cleavage patterns of 334 zygotes were analyzed using time-lapse monitoring (TLM). In addition, oocyte morphology was assessed in relation to embryo morphokinetic (absolute time point, including time to second polar body (PB) extrusion (ESPB), pronuclei (PN) appearance (PNA), PN fading (PNF), time to 2-cells (t2), 3c (t3), 4c (t4), 5c (t5), 6c (t6), 7c (t7), 8c (t8) and relative timing parameters (S1, S2, CC2 and CC3). Also, cleavage patterns (uneven blastomeres, reverse, direct and arbitrary) were assessed. The data showed that 79% of the normal fertilized oocytes had at least one abnormal morphological characteristic. Intra-cytoplasmic abnormalities were observed in 12% of the oocytes. Also, extra-cytoplasmic abnormalities were noticed in 29%, while combined intra- and extra-cytoplasmic abnormalities were responsible for the remaining 38% of the oocytes. Nearly all cleavage and interval times, except extrusion of the ESPB time (P = 0.003), were similar between normal and abnormal morphologic oocytes (P < 0.05). Moreover, there was significant relationship for oocyte morphology abnormalities and cleavage patterns, including uneven blastomere (P = 0.037), reverse cleavage (RC) (P = 0.0), direct (P = 0.001) and arbitrary cleavages (P = 0.001). Using TLM, the cleavage patterns of embryos were affected by the quality of MII oocytes in the ICSI cycles. So, evaluation of oocyte morphology with subsequent embryo morphokinetics is recommended in assisted reproductive programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almagor, M., Or, Y., Fieldust, S. & Shoham, Z. (2015). Irregular cleavage of early preimplantation human embryos: characteristics of patients and pregnancy outcomes. J. Assist. Reprod. Genet. 32, 1181–5.CrossRefGoogle ScholarPubMed
Ashrafi, M., Karimian, L., Eftekhari Yazdi, P., Hasani, F., Bahmanabadi, A. & Akhond, M.R. (2015). Effect of oocyte dysmorphisms on intracytoplasmic sperm injection cycle outcomes in normal ovarian responders. J. Obstet. Gynaecol. Res. 41, 1912–20.CrossRefGoogle ScholarPubMed
Braga, D.P.A.F., Setti, A.S., Rita de Cássia, S.F.s, Machado, R.B., Iaconelli, A. Jr & Borges, E. Jr (2013). Influence of oocyte dysmorphisms on blastocyst formation and quality. Fertil. Steril. 100, 748–54.CrossRefGoogle ScholarPubMed
Ceviren, A.K., Ozcelik, N.T., Urfan, A., Donmez, L. & Isikoglu, M. (2014). Characteristic cytoplasmic morphology of oocytes in endometriosis patients and its effect on the outcome of assisted reproduction treatments cycles. IVF Lite 1, 8893.Google Scholar
Chamayou, S., Patrizio, P., Storaci, G., Tomaselli, V., Alecci, C., Ragolia, C., Crescenzo, C. & Guglielmino, A. (2013). The use of morphokinetic parameters to select all embryos with full capacity to implant. J. Assist. Reprod. Genet. 30, 703–10.CrossRefGoogle ScholarPubMed
Chawla, M., Fakih, M., Shunnar, A., Bayram, A., Hellani, A., Perumal, V., Divakaranm, J. & Budak, E. (2015). Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J. Assist. Reprod. Genet. 32, 6975.CrossRefGoogle Scholar
Esfandiari, N., Burjaq, H., Gotlieb, L. & Casper, R.F. (2006). Brown oocytes: implications for assisted reproductive technology. Fertil. Steril. 86, 1522–5.CrossRefGoogle ScholarPubMed
Fancsovits, P., Murber, A., Gilan, Z.T., Rigo, J. & Urbancsek, J. (2011). Human oocytes containing large cytoplasmic vacuoles can result in pregnancy and viable offspring. Reprod. Biomed. Online 23, 513–6.CrossRefGoogle ScholarPubMed
Fancsovits, P., Tóthné, Z., Murber, Á. & Rigó, J. & Urbancsek, J. (2012). Importance of cytoplasmic granularity of human oocytes in in vitro fertilization treatments. Acta Biologica Hungarica 63, 189201.CrossRefGoogle ScholarPubMed
Faramarzi, A., Khalili, M.A. & Soleimani, M. (2015). First successful pregnancies following embryo selection using time-lapse technology in Iran: Case report. Iran J. Reprod. Med. 13, 237.Google ScholarPubMed
Halvaei, I., Khalili, M.A., Razi, M.H. & Nottola, S.A. (2012). The effect of immature oocytes quantity on the rates of oocytes maturity and morphology, fertilization, and embryo development in ICSI cycles. J. Assist. Reprod. Genet. 29, 803–10.CrossRefGoogle ScholarPubMed
Kahraman, S., Yakın, K., Dönmez, E., Şamlı, H. & Bahce, M. (2000). Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum. Reprod. 15, 2390–3.CrossRefGoogle ScholarPubMed
Kaser, D.J., Reichman, D.E., Ginsburg, E.S. & Politch, J.A. & Racowsky, C. (2012). Developmental potential of embryos from intracytoplasmic sperm injection cycles containing fragmented oocytes. Fertil. Steril. 97, 338–43.CrossRefGoogle ScholarPubMed
Khalili, M.A., Mojibian, M. & Sultan, A.M. (2005). Role of oocyte morphology on fertilization and embryo formation in assisted reproductive technique. Mid. East Fertil. Soc. J. 10, 72–7.Google Scholar
Kirkegaard, K., Agerholm, I.E. & Ingerslev, H.J. (2012). Time-lapse monitoring as a tool for clinical embryo assessment. Hum. Reprod. 27, 1277–85.CrossRefGoogle ScholarPubMed
Lemmen, J., Agerholm, I. & Ziebe, S. (2008).Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17, 385–91.CrossRefGoogle ScholarPubMed
Liu, Y., Chapple, V., Roberts, P. & Matson, P. (2014). Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the embryoscope time-lapse video system. Fertil. Steril. 102, 12951300.CrossRefGoogle ScholarPubMed
Liu, Y., Chapple, V., Feenan, K., Roberts, P. & Matson, P. (2016). Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil. Steril. 105, 656–62.CrossRefGoogle ScholarPubMed
Loutradis, D., Drakakis, P., Kallianidis, K., Milingos, S., Dendrinos, S., Michalas, S. & Stylianos, S. (1999). Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertil. Steril. 72, 240–4.CrossRefGoogle ScholarPubMed
Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K.M., Ramsing, N.B. & Remoh, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–71.CrossRefGoogle ScholarPubMed
Molina, I., Martínez, J.V., Pertusa, J.F., Balasch, S., Iniesta, I. & Pellicer, A. (2014). Assessment of the implantation of day-2 human embryos by morphometric nonsubjective parameters. Fertil. Steril. 102, 1022–8.CrossRefGoogle ScholarPubMed
Motato, Y., de los Santos, M.J., Escriba, M.J., Ruiz, B.A., Remohí, J. & Meseguer, M. (2016). Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil. Steril. 105, 376–84.CrossRefGoogle ScholarPubMed
Nichi, M., Figueira, R.C.S., Braga, D.P.A.F., Setti, A.S., Iaconelli, A. Jr & Borges, E. Jr (2011). Decreased fertility in poor responder women is not related to oocyte morphological status. Arch. Med. Sci. 7, 315–20.Google Scholar
Omidi, M., Khalili, M.A., Ashourzadeh, S. & Rahimipour, M. (2014). Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology. Reprod. Fertil. Dev. 26, 407–13.CrossRefGoogle Scholar
Plachot, M., Selva, J., Wolf, J.P., Bastit, P. & de Mouzon, J. (2002). Consequences of oocyte dysmorphy on the fertilization rate and embryo development after intracytoplasmic sperm injection. A prospective multicenter study. Gynecol. Obstet. Fertil. 30, 772–9.CrossRefGoogle ScholarPubMed
Qassem, E.G., Falah, K.M., Aghaways, I.H.A. & Salih, T.A. (2015). A correlative study of oocytes morphology with fertilization, cleavage, embryo quality and implantation rates after intra cytoplasmic sperm injection. Acta Medica Int. 2, 713.CrossRefGoogle Scholar
Rienzi, L., Ubaldi, F.M., Iacobelli, M., Minasi, M.G., Romano, S., Ferrero, S., Sapienza, F., Baroni, E., Litwicka, K. & Greco, E. (2008). Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil. Steril. 90, 1692–700.CrossRefGoogle ScholarPubMed
Rienzi, L., Vajta, G. & Ubaldi, F. (2011). Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum. Reprod. Update 17, 3445.CrossRefGoogle ScholarPubMed
Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escriba, M.J., Bellver, J. & Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil. Steril. 98, 1458–63.CrossRefGoogle ScholarPubMed
Sauerbrun-Cutler, M.-T., Breborowic, A., Gonzales, E., Stein, D., Lederman, M. & Keltz, M. (2015). Oocyte zona pellucida dysmorphology is associated with diminished in-vitro fertilization success. J. Ovarian Res. 8, 5.CrossRefGoogle ScholarPubMed
Setti, A.S., Figueira, R.C., Braga, D.P.A.F., Colturato, S.S., Iaconelli, A. Jr & Borges, E. Jr (2011). Relationship between oocyte abnormal morphology and intracytoplasmic sperm injection outcomes: a meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 159, 364–70.CrossRefGoogle ScholarPubMed
Uyar, A., Torrealday, S. & Seli, E. (2013). Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–97.CrossRefGoogle ScholarPubMed
Wirka, K.A., Chen, A.A., Conaghan, J., Ivani, K, Gvakharia, M., Behr, B., Suraj, V. & Tan, L. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil. Steril. 101, 1637–48.CrossRefGoogle Scholar
Yakin, K., Balaban, B., Isiklar, A. & Urman, B. (2007). Oocyte dysmorphism is not associated with aneuploidy in the developing embryo. Fertil. Steril. 88, 811–6.CrossRefGoogle Scholar
Yu, E.J., Ahh, H., Lee, J.M., Jee, B.C. & Kim, S.H. (2015). Fertilization and embryo quality of mature oocytes with specific morphological abnormalities. Clin. Exp. Reprod. Med. 42, 156–62.CrossRefGoogle ScholarPubMed