Hostname: page-component-5cf477f64f-2wr7h Total loading time: 0 Render date: 2025-03-31T15:53:39.713Z Has data issue: false hasContentIssue false

Obesity alters testicular gene expression in mice, monkeys and humans

Published online by Cambridge University Press:  21 March 2025

Wen Shao
Affiliation:
State-owned Assets Management Office, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, SN, 710061, China Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, SN, 710061, China
Weijie Li
Affiliation:
State-owned Assets Management Office, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, SN, 710061, China
Xingjuan Yuan
Affiliation:
Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, SN, 710061, China
Haifeng Zhang*
Affiliation:
Xi’an International Medical Center Hospital, Xi’an, SN, China
Juan Zhao*
Affiliation:
Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, SN, 710061, China Laboratory Animal Center, School of Basic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an, SN, 710061, China
*
Corresponding authors: Haifeng Zhang; Email: zhanghaifengk@163.com; Juan Zhao; Email: lhzj1203@163.com
Corresponding authors: Haifeng Zhang; Email: zhanghaifengk@163.com; Juan Zhao; Email: lhzj1203@163.com

Abstract

Obesity, a global health issue, is associated with numerous diseases and has been shown to affect male reproductive health by inducing endocrine hormonal changes, chronic inflammation, oxidative stress and epigenetic alterations in reproductive cells. This study investigates the impact of obesity on testicular gene expression across mice, monkeys and humans, identifying 730 conserved testis-specific genes. High-fat diet-induced obesity upregulates GNG5, INHA, MSH5, SLC30A8 and SLC7A4 in testes, suggesting their potential as regulatory targets in testicular damage associated with obesity. Single-cell analysis reveals species-conserved expression patterns of SLC7A4 in Sertoli cells and SLC30A8 in SPG cells. It also confirmed that SLC30A8 and SLC7A4 were significantly upregulated in the testes of spontaneously obese mice. The findings highlight the potential of these genes as regulatory targets in obesity-related testicular dysfunction, providing insights into male reproductive health impairments caused by obesity.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bluher, M. (2019) Obesity: global epidemiology and pathogenesis. Nature Reviews Endrocrinology 15, 288298.CrossRefGoogle Scholar
Cao, W., Zhang, Y., Qi, J., Zhang, Y., Ding, R., Meng, B., Zhao, J., Luo, S., Shen, C., Duan, C., Qin, H., Ye, Y., Liu, E. and Qu, P. (2024) Single-cell transcriptome atlas of testes from mice with high-fat diets. Scientific Data 11, 573.CrossRefGoogle ScholarPubMed
Carrageta, D.F., Pereira, S.C., Ferreira, R., Monteiro, M.P., Oliveira, P.F. and Alves, M.G. (2024) Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nature Reviews Urology 21, 477494.CrossRefGoogle ScholarPubMed
Collaboration, N. C. D. Risk Factor. (2024) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403, 10271050.CrossRefGoogle Scholar
Das, M. (2022) WHO urges immediate action to tackle non-communicable diseases. Lancet Oncology 23, 1361.CrossRefGoogle ScholarPubMed
Djureinovic, D., Fagerberg, L., Hallstrom, B., Danielsson, A., Lindskog, C., Uhlen, M. and Ponten, F. (2014) The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Molecular Human Reproduction 20, 476488.CrossRefGoogle ScholarPubMed
Du, Y., Wang, X., Wang, B., Chen, W., He, R., Zhang, L., Xing, X., Su, J., Wang, Y. and Zhang, Y. (2014) Deep sequencing analysis of microRNAs in bovine sperm. Molecular Reproduction and Development 81, 10421052.CrossRefGoogle ScholarPubMed
Fui, M.N., Dupuis, P. and Grossmann, M. (2014) Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian Journal of Andrology 16, 223231.Google ScholarPubMed
Grandjean, V., Fourre, S., De Abreu, D.A., Derieppe, M.A., Remy, J. J. and Rassoulzadegan, M. (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Scientific Reports 5, 18193.CrossRefGoogle ScholarPubMed
Han, L., Wei, X. Y., Liu, C.Y., Volpe, G., Zhuang, Z.K., Zou, X.X., Wang, Z.F., Pan, T.T., Yuan, Y., Zhang, X., Fan, P., Guo, P.C., Lai, Y.W., Lei, Y., Liu, X.Y., Yu, F., Shangguan, S.C., Lai, G.Y., Deng, Q.T., Liu, Y., Wu, L., Shi, Q., Yu, H., Huang, Y. T., Cheng, M.N., Xu, J.S., Liu, Y., Wang, M.Y., Wang, C.Q., Zhang, Y. H., Xie, D., Yang, Y.Z., Yu, Y.Y., Zheng, H.W., Wei, Y.R., Huang, F.B.Q., Lei, J.J., Huang, W.D., Zhu, Z.Y., Lu, H.R., Wang, B., Wei, X.F., Chen, F.Z., Yang, T., Du, W.S., Chen, J., Xu, S.B., An, J., Ward, C., Wang, Z.R., Pei, Z., Wong, C.W., Liu, X. L., Zhang, H.F., Liu, M.Y., Qin, B.M., Schambach, A., Isern, J., Feng, L.Q., Liu, Y., Guo, X.Y., Liu, Z., Sun, Q., Maxwell, P.H., Barker, N., Muñoz-Cánoves, P., Gu, Y., Mulder, J., Uhlen, M., Tan, T., Liu, S.P., Yang, H.M., Wang, J., Hou, Y., Xu, X., Esteban, M.A. and Liu, L.Q. (2022) Cell transcriptomic atlas of the non-human primate. Nature 604, 723-+.CrossRefGoogle ScholarPubMed
Jarvis, S., Gethings, L.A., Samanta, L., Pedroni, S.M.A., Withers, D. J., Gray, N., Plumb, R.S., Winston, R.M.L., Williamson, C. and Bevan, C.L. (2020) High fat diet causes distinct aberrations in the testicular proteome. International Journal of Obesity (Lond) 44, 19581969.CrossRefGoogle ScholarPubMed
Lainez, N.M. and Coss, D. (2019) Obesity, neuroinflammation, and reproductive function. Endocrinology 160, 27192736.CrossRefGoogle ScholarPubMed
Lv, Z.M., Ling, M.Y. and Chen, C. (2020) Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Systems Biology in Reproductive Medicine 66, 3749.CrossRefGoogle ScholarPubMed
Meng, B., He, J., Cao, W., Zhang, Y., Qi, J., Luo, S., Shen, C., Zhao, J., Xue, Y., Qu, P. and Liu, E. (2024) Paternal high-fat diet altered H3K36me3 pattern of pre-implantation embryos. Zygote 32, 16.CrossRefGoogle ScholarPubMed
Ozata, D.M., Gainetdinov, I., Zoch, A., O’Carroll, D. and Zamore, P. D. (2019) PIWI-interacting RNAs: small RNAs with big functions. Nature Reviews Genetics 20, 89108.CrossRefGoogle ScholarPubMed
Pan, J.B., Hu, S.C., Shi, D., Cai, M.C., Li, Y.B., Zou, Q. and Ji, Z.L. (2013) PaGenBase: a pattern gene database for the global and dynamic understanding of gene function. PLoS One 8, e80747.CrossRefGoogle ScholarPubMed
Peng, W., Chen, S., Chen, X., Ma, Y., Wang, T., Sun, X., Wang, Y., Ding, G. and Wang, Y. (2024) Trends in major non-communicable diseases and related risk factors in China 2002-2019: an analysis of nationally representative survey data. The Lancet Regional Health Western Pacific 43, 100809.CrossRefGoogle Scholar
Pound, L.D., Sarkar, S.A., Cauchi, S., Wang, Y., Oeser, J.K., Lee, C.E., Froguel, P., Hutton, J.C. and O’Brien, R.M. (2011) ‘Characterization of the human SLC30A8 promoter and intronic enhancer. Journal of Molecular Endocrinology 47, 251259.CrossRefGoogle ScholarPubMed
Qin, H., Qu, P., Hu, H., Cao, W., Liu, H., Zhang, Y., Zhao, J., Nazira, F. and Liu, E. (2021) Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit. Zygote 29, 331336.CrossRefGoogle ScholarPubMed
Qu, P., Rom, O., Li, K., Jia, L., Gao, X., Liu, Z., Ding, S., Zhao, M., Wang, H., Chen, S., Xiong, X., Zhao, Y., Xue, C., Zhao, Y., Chu, C., Wen, B., Finney, A.C., Zheng, Z., Cao, W., Zhao, J., Bai, L., Zhao, S., Sun, D., Zeng, R., Lin, J., Liu, W., Zheng, L., Zhang, J., Liu, E. and Chen, Y.E. (2023) DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metabolism 35, 74257 e10.CrossRefGoogle ScholarPubMed
Rutter, G.A. and Chimienti, F. (2015) SLC30A8 mutations in type 2 diabetes. Diabetologia 58, 3136.CrossRefGoogle ScholarPubMed
Shaikh, S.R., Beck, M.A., Alwarawrah, Y. and MacIver, N.J. (2024) Emerging mechanisms of obesity-associated immune dysfunction. Nature Reviews Endrocrinology 20, 136148.CrossRefGoogle ScholarPubMed
Sperandeo, M.P., Borsani, G., Incerti, B., Zollo, M., Rossi, E., Zuffardi, O., Castaldo, P., Taglialatela, M., Andria, G. and Sebastio, G. (1998) The gene encoding a cationic amino acid transporter (SLC7A4) maps to the region deleted in the velocardiofacial syndrome. Genomics 49, 230236.CrossRefGoogle Scholar
Sukur, G., Uysal, F. and Cinar, O. (2023) High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochemistry and Cell Biology 159, 339352.CrossRefGoogle ScholarPubMed
Wang, S., Bu, N., Yun, Y., Shi, X., Wang, S. and Gao, Y. (2023) RNA-Seq analysis of testes from mice exposed to neodymium oxide. Toxics 11, 952.CrossRefGoogle ScholarPubMed
Wei, S., Luo, S., Zhang, H., Li, Y. and Zhao, J. (2023) Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. Genes & Nutrition 18, 12.CrossRefGoogle ScholarPubMed
Zhang, Y., Qi, J., Zhao, J., Li, M., Zhang, Y., Hu, H., Wei, L., Zhou, K., Qin, H., Qu, P., Cao, W. and Liu, E. (2023) Effect of dietetic obesity on testicular transcriptome in cynomolgus monkeys. Genes 14, 557.CrossRefGoogle ScholarPubMed
Zhao, L., Zhao, Y., Yao, C., Dai, Y., Li, Z. and Tang, Y. (2023) MHA, an interactive website for scRNA-seq data of male genitourinary development and disease. Andrology 11, 11571162.CrossRefGoogle ScholarPubMed
Zhou, C., Zhang, L., Xu, D., Ding, H., Zheng, S. and Liu, M. (2022) MeDIP-seq and RNA-seq analysis during porcine testis development reveals functional DMR at the promoter of LDHC. Genomics 114, 110467.CrossRefGoogle ScholarPubMed