Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T14:39:53.590Z Has data issue: false hasContentIssue false

The microenvironment created by non-blocking embryos in aggregates may rescue blocking embryos via cell–embryo adherent contacts

Published online by Cambridge University Press:  26 September 2008

Galina G. Sekirina*
Affiliation:
Laboratory of cell Morphology, Institute of CytologyRussian Academy of Sciences, Saint Petersburg, Russia
Irina E. Neganova
Affiliation:
Laboratory of cell Morphology, Institute of CytologyRussian Academy of Sciences, Saint Petersburg, Russia
*
Dr Galina G. Sekirina, RAS Institute of Cytology, 4 Tikhoretzky pr., Sankt-Petersburg 194064, Russia. Telephone: (812) 156-3322. Fax: (812) 247-0341.

Summary

Under our culture conditions, mouse embryos from the BALB/c inbred mouse strain develop successfully in culture only from the late 2-cell stage onwards (so-called 2-cell block), whether or not EDTA is added to the culture medium. (CBA × C57BL) F2 embryos do not exhibit a 2-cell block. Medium conditioned by culture of non-blocking embryos from the 2-cell to the 8-cell stage did not improve the development of blocking embryos, nor did co-culture of blocking and non-blocking embryos, with or without conditioned medium. On the other hand phytohaemagglutinin (PHA)-assisted aggregation of an early 2-cell BALB/c embryo with five surrounding non-blocking F2 embryos (2-cell or 8-cell) or five BALB/c 8-cell embryos allowed the early 2-cell BALB/c embryos to develop into blastocysts within 72 h. Aggregation of blocking BALB/c 2-cell embryos with each other had no ‘rescue’ effect. When blocking and non-blocking 2-cell embryos were aggregated together, an integrated blastocyst was formed; but when the early 2-cell BALB/c embryos were aggregated with non-blocking 8-cell embryos, the blocking embryos formed a separate small blastocyst, which nonetheless retained adherent contact with the non-blocking embryos throughout the culture period. Ultrastructural analysis showed that 2-cell embryos aggregated with the aid of PHA form close adherent cell contacts up to several micrometres in length.

Type
Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramczuk, J., Solter, D., & Koprowski, H. (1977) The beneficial effect of EDTA on development of mouse one-cell embryos in chemically defined medium. Dev. Biol. 61 378–83.CrossRefGoogle ScholarPubMed
Allen, R.L., & Wright, R.W. (1984). In vitro development of porcine embryos in coculture with endometrial cell monolayer or culture supernatants. J. Anim. Sci. 59 1657–61.CrossRefGoogle ScholarPubMed
Anderegg, C., & Markert, C.L. (1986). Successful rescue of microsurgically produced homozygous uniparental mouse embryos via production of aggregation chimeras. Proc. Natl. Acad. Sci. USA 83 6509–13.CrossRefGoogle ScholarPubMed
Aoki, F.T., Choi, T., Mori, M., Yamashita, M., Nagahama, Y. & Kohmoto, K. (1992). A deficiency in the mechanism for P34cdc2 protein kinase activation in mouse embryos arrested at 2-cell stage Dev. Biol. 154 6672.CrossRefGoogle Scholar
Barlow, P., Owen, D.A.J & Graham, C. (1972). DNA synthesis in the preimplantation mouse embryo. J. Embryol. Exp. Morphol. 27, 431–45.Google ScholarPubMed
Bennet, D. (1975). The T-locus of the mouse (review). Cell 6 441–54.CrossRefGoogle Scholar
Bennet, D. (1978). Rescue of a lethal T/t locus genotype by chimerism with normal embryos. Nature 272, 539.CrossRefGoogle Scholar
Biggers, J.D (1971). New observations on the nutrition of the mammalian oocyte and the preimplantation embryo. In The Biology of Blastocyst, ed. Blandau, R.J.319–27 Chicago: University of Chicago Press.Google Scholar
Biggers, J.D. (1993). The culture of the mammalian preimplantation embryo. In Implantation in Mammals, ed. Gianavoil, L., Campona, A. & Trounson, A.O., pp. 123–35. New York: Raven Press.Google Scholar
Bou-Gharios, G.Moss, J., Partridge, T., Abraham, D. & Olsen, I. (1991). Contact-dependent transfer of a lysosomal enzyme from lymphocytes to fibroblasts. J. cell Sci. 100, 443–9.CrossRefGoogle ScholarPubMed
Brown, J.J. (1991). Cleavage arrest during mouse preimplantation development in vitro. PhD thesis, University of London.Google Scholar
Camous, S., Heyman, Y., Meziou, W. & Menezo, Y. (1984). Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J. Reprod. Fertil. 72 479–85.CrossRefGoogle ScholarPubMed
Chow, I. & Poo, M.-M. (1982). Redistribution of cell surface receptors induced by cell–cell contact. J. Cell Biol. 95 510–18.CrossRefGoogle ScholarPubMed
Cross, P.C. & Brinster, R.L. (1973). The sensitivity of one cell mouse embryos to pyruvate and lactate. Exp. Cell Res. 77, 5762.CrossRefGoogle Scholar
Dandekar, P.V. & Glass, R.H. (1987). Development of mouse embryos in vitro is affected by strain and culture medium. Gamete Res. 17 279–85.CrossRefGoogle ScholarPubMed
Dyban, A.P. (1983). An improved method for chromosome preparation from preimplantation mammalian embryos, oocytes or isolated blastomeres. Stain Technol. 58 6972.CrossRefGoogle ScholarPubMed
Dyban, A.P. & Sekirina, G.G. (1981). A study of preimplantation development of monozygotic twins: experiments with mouse embryos. Ontogenesis (Russian journal of developmental biology) 12, 130–9.Google ScholarPubMed
Ebert, K.M. & Brinster, R.L. (1983). Rabbit β-globin messenger RNA translation by the mouse ovum. J. Embryol. Exp. Morphol. 74, 159–68.Google Scholar
Eicher, E.M. & Hope, P.C. (1973). Use of chimeras to transmit lethal genes in the mouse and to demonstrate allelism of the two X-linked male lethal genes jp and msd. J. Exp. Zool. 183, 181–4.CrossRefGoogle ScholarPubMed
Fissore, R.A., Jackson, K.V., & Kiessling, A.A. (1989) Mouse zygote development in culture medium without protein in the presence of ethylenediaminetetraacetic acid. Biol. Reprod. 41 835–41.CrossRefGoogle ScholarPubMed
Gandolfi, F. & Moor, R.M. (1987). Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fertil. 81, 23–8.CrossRefGoogle ScholarPubMed
Garner, W. & McLaren, A. (1974). Cell distribution in chimaeric mouse embryos before implantation, J. Embryol. Exp. Morphol. 32, 495503.Google ScholarPubMed
Gaunt, S.J. & Papaioannou, V.E. (1979). Metabolic co-operation between embryonic and embryonal carcinoma cell of the mouse. J. Embryol. Exp. Morphol. 54, 263–75.Google ScholarPubMed
Goddard, M.J., & Pratt, H.P.M. (1983). Control of events during early cleavage of the mouse embryo: an analysis of the ‘2-cell block’. J. Embryol. Exp. Morphol. 73, 111–33.Google ScholarPubMed
Goodall, H. & Johnson, M.H. (1982). Use of carboxyfluoresceindiacetate to study formation of permeable channels between mouse blastomeres. Nature 295, 524–6.CrossRefGoogle ScholarPubMed
Goto, K., Kajihara, S., Kosaka, S., Koba, M., Nakanishi, Y. & Ogawa, K. (1988). Pregnancies after co-culture of cumulus cells with bovine embryos derived from in vitro fertilisation of in vitro matured follicular oocytes. J. Reprod. Fertil. 83, 753–8.CrossRefGoogle ScholarPubMed
Gulyas, B.J., Wood, M., & Whittingham, D.G. (1984). Fusion of oocytes and development of oocyte fusion products in the mouse. Dev. Biol. 101 246–50.CrossRefGoogle ScholarPubMed
Harvey, M.B. & Kaye, P.L. (1991). IGF-2 receptors are first expressed at the 2-cell stage of mouse development. Development 111, 1057–60.CrossRefGoogle ScholarPubMed
Heyman, Y., Menezo, Y., Chesne, P., Camous, S. & Garnier, V. (1987) In vitro cleavage of bovine and ovine early embryos: improved development using coculture with trophoblastic vesicles. Theriogenology 27, 5968.CrossRefGoogle Scholar
Heyner, S., Smith, R.M. & Schultz, G.A. (1989). Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. BioEssays 11, 171–6.CrossRefGoogle ScholarPubMed
Izquierdo, L. (1977) Cleavage and differentiation. In Development in Mammals, ed. Johnson, M.H., vol. 2, pp. 99118. Amsterdam: North-Holland.Google Scholar
Izquierdo, L., Ebensperger, C. (1982). Cell membrane regionalization in early mouse embryos as demonstrated by 5'-nucleotidase activity. J. Embryol. Exp. Morphol. 69, 115–26.Google ScholarPubMed
Izquierdo, L., Lopez, T. & Marticorena, P. (1989). Cell membrane regions in preimplantation mouse embryos. J. Embryol. Exp. Morphol. 59, 89102Google Scholar
Kaufman, M.H. (1983). Early Mammalian Development: Parthenogenetic Studies. Cambridge: Cambridge University Press.Google Scholar
Kelly, S.J. & Rossant, J. (1976). The effect of short-term labelling in [3H]thymidine on the viability of mouse blastomeres: alone and in combination with unlabeled blastomeres J. Emryol. Exp. Morphol. 35, 95106.Google ScholarPubMed
Kelly, S.J., Mulnard, J.G. & Graham, C.F. (1978). Cell division and cell allocation in early mouse development. J. Embryol. Exp. Morphol. 48 3751.Google ScholarPubMed
Lawitts, J.A., & Biggers, J.D. (1991) Optimisation of mouse embryo culture media using simplex methods. J. Reprod. Fertil. 91, 543–56.CrossRefGoogle Scholar
Lois, P. & Izquierdo, I. (1984) Cell membrane regionalization and cytoplasm polarisation in the rat early embryo. Rouxs Arch. Dev. Biol 193, 205–10.CrossRefGoogle ScholarPubMed
Lehtonen, E. (1980). Changes in cell dimensions and intercellular contacts during cleavage- stage cell cycle in mouse embryonic cells. J. Embryol. Exp. Morphol. 58, 231–49.Google ScholarPubMed
Lu, T-Y. & Markert, C.L. (1980). Manufacture of diploid/tetraploid chimeric mice Proc. Natl. Acad. Sci. USA 77, 6012–16.CrossRefGoogle ScholarPubMed
McLachlin, J.R., Caveney, S. & Kidder, G.M. (1983). Control of gap junction formation in early mouse embryos. Dev. Biol. 98, 155–64.CrossRefGoogle ScholarPubMed
McLaren, A. (1976). Mammalian Chimaeras, p. 48. Cambridge: Cambridge University Press.Google Scholar
McLaren, A. (1981). Analysis of maternal effects on development in mammals. J. Reprod. Fertil.. 62, 591–6.CrossRefGoogle ScholarPubMed
Minami, N., Bavister, B.D., & Iritani, A. (1988). Development of hamster two-cell embryos in the isolated mouse oviduct in organ culture system. Gamete Res.. 19, 235–40.CrossRefGoogle ScholarPubMed
Mintz, B. (1964). Formation of genetically mosaic mouse embryos, and early development of ‘lethal (t 12/t 12) – normal’ mosaics J. Exp. Zool. 157, 273–92.CrossRefGoogle ScholarPubMed
Mintz, B., (1965). Experimental genetic mosaicism in the mouse. In Preimplantation Stages of Pregnancy, ed. Wolstenholme, G.E.W.O'Connor, M., pp. 194207. London: Churchill-Livingstone.Google Scholar
Muggleton-Harris, A., Whittingham, D.G. & Wilson, L. (1982). Cytoplasmic control of preimplantation development in vitro in the mouse. Nature 299, 460–2CrossRefGoogle ScholarPubMed
Nakamura, K. & Tsunoda, Y. (1987). An analysis of in vitro 2-cell block by using pronuclear transplantation technique (in Japanese). Jpn. Anim. Reprod 33, 1518.CrossRefGoogle Scholar
Nasr-Esfahani, M., Johnson, M.H. & Aitkin, J.R. (1990). The effect of iron and iron chelators on the in vitro block to development of the mouse preimplantation embryo: BAT6 as new medium for improved culture of mouse embryos in vitro. Hum. Reprod. 5, 9971003.CrossRefGoogle ScholarPubMed
Neganova, I.E. & Sekirina, G.G(in press). ‘Block’ and viability of BALB/c mouse embryos after explantation during second cell cycle of cleavage division. Ontogenesis (Russian journal of developmental biology), in press.Google Scholar
Noda, Y., Matsumoto, H., Umaoka, Y., Tatsumi, K., Kishi, J. & Mori, T. (1991) Involvement of superoxide radicals in the two-cell block. Mol. Reprod. Dev. 28, 356–60.CrossRefGoogle ScholarPubMed
Otani, H., Yokoyama, M., Nozawa-Kimura, S., Tanaka, O. & Katsuki, M., (1987). Pluripotency of monozygous-diploid mouse embryos in chimeras. Dev. Growth Differ. 29, 373–80.CrossRefGoogle ScholarPubMed
Poueymirou, W.T., Conover, J.C. & Schultz, R.M. (1989). Regulation of mouse preimplantation development:differential effects of CZB medium and Whitten's medium on rates and patterns of protein synthesis in 2-cell embryos Biol. Reprod. 41, 317–22.CrossRefGoogle ScholarPubMed
Pratt, H.P.M. & Muggleton-Harris, A.L. (1988). Cycling cytoplasmic factors that promote mitosis in the cultured 2-cell mouse embryo Development 104, 115–20CrossRefGoogle ScholarPubMed
Sepulveda, S. & Izquirdo, I. (1990) Effect of cell contact on regionalization of mouse embryos Dev. Biol. 139, 363–9.CrossRefGoogle ScholarPubMed
Sidman, R.I., Dickie, M.M. & Appel, S.A. (1964). Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science 144, 309–11.CrossRefGoogle ScholarPubMed
Snow, M.H.I. (1975). Embryonic development of tetraploid mice during the second half of gestation. J. Embryol. Exp. Morphol. 34, 707–21.Google ScholarPubMed
Sobel, J.S. (1983). Cell–cell contact modulation of myosin organization in the early mouse embryo. Dev. Biol. 100, 207–13,CrossRefGoogle ScholarPubMed
Spindle, A. (1982). Cell allocation in preimplantation mouse chimeras. J. Exp. Zool. 219, 361–7.CrossRefGoogle ScholarPubMed
Stern, S. (1972). Experimental studies on the organization of the preimplantation mouse embryo. II. Reaggregation of disaggregated embryos. J. Embryol. Exp. Morphol. 28, 255–61.Google ScholarPubMed
Stevens, L.C. (1978). Totipotent cells of parthenogenetic origin in a chimeras mouse. Nature 276, 266–7.CrossRefGoogle Scholar
Stevens, L.C., Varnum, D.S., & Eicher, E.M. (1977). Viable chimeras produced from normal and parthenogenetic mouse embryos. Nature 269, 515–17.CrossRefGoogle ScholarPubMed
Surani, M.A.H., & Barton, S.C. (1983). Development of gynogenetic eggs in the mouse: implication for parthenogenetic embryos. Science 222, 1034–6.CrossRefGoogle ScholarPubMed
Surani, M.A.H., Barton, S.C., & Kaufman, M.H. (1977). Development to term of chimeras between diploid parthenogenetic and fertilised embryos. Nature 270, 601–3.CrossRefGoogle ScholarPubMed
Suzuki, S., Komatsu, S., Kitai, H., Endo, Y., Iizuka, R., & Fukasawa, T. (1988). Analysis of cytoplasmic factors in development cleavage of mouse embryo. Cell Differ. 24, 133–8.CrossRefGoogle ScholarPubMed
Tachi, S., & Tachi, C. (1980). Electron microscopic studies of chimeric blastocysts experimentally produced by aggregating blastomeres of rat and mouse embryos. Dev. Biol. 80, 1827.CrossRefGoogle ScholarPubMed
Whitten, W.K. (1971). Nutrient requirements for the culture of preimplantation embryos in vitro. Adv. Biosci. 6, 129–41.Google Scholar
Whittingham, D.G. (1971). Culture of mouse ova. J. Reprod Fertil. Suppl. 14, 721.Google ScholarPubMed
Whittingham, D.G. (1974). Fertilisation, early development and storage of mammalian ova in vitro. In Early Development of Mammals, British Society for Developmental Biology Symposium 2, ed. Balls, M. & Wild, A.E., 1, 1224. Cambridge: Cambridge University Press.Google Scholar
Whittingham, D.G., & Bavister, B.D. (1974). Development of hamster eggs fertilised in vitro or in vivo. J. Reprod. Fertil. Suppl. 38, 489–92.CrossRefGoogle ScholarPubMed
Whittingham, D.G., & Biggers, J.D. (1967). Fallopian tube and early cleavage in the mouse. Nature 213, 942–3.CrossRefGoogle ScholarPubMed
Wright, R.W., & Bondioli, K.R. (1981). Aspects of in vitro fertilisation and embryo culture in domestic animals. J. Anim. Sci. 53, 702–29.CrossRefGoogle ScholarPubMed