Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-28T23:15:03.170Z Has data issue: false hasContentIssue false

Investigation of the effect of serotonin-activated semen washing medium on sperm motility at the molecular level: a pilot study

Published online by Cambridge University Press:  11 November 2024

Elnaz Moshfeghi
Affiliation:
Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
Yasemin Yilmazer
Affiliation:
Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
Sinem Dogan
Affiliation:
Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
Turgut Aydin
Affiliation:
Department of Gynecology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
Necati Findikli
Affiliation:
IVF Laboratory, Erasme Hospital, Brussels, Belgium
Tulin Ozbek*
Affiliation:
Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
*
Corresponding author: Tulin Ozbek; Email: [email protected]

Summary

In Assisted Reproductive Technologies (ART), efficient sperm preparation is vital for successful fertilization, with washing media enhancing the process. This pilot study examines the molecular-level impact of a new serotonin-containing sperm-washing medium (Prototype) on sperm motility and ROS metabolism, comparing it with commercially available media (Origio and Irvine). Semen samples from thirty-one individuals underwent preparation using the swim-up method post-semen analysis. Each sample was separately washed with the Prototype, Origio and Irvine mediums. ROS formation was determined through flow cytometric, and AT2R and PRDX2 protein levels, associated with sperm motility, were assessed via Western blot. Statistical evaluation compared the findings among the three outlined media. Significant differences were found among three washing media in terms of total and progressive motility. The Prototype medium showed the highest increase in both total (66%) and progressive motility (59%), while the control group exhibited the lowest increases (41% and 27.7%, respectively). Regarding ROS levels, the prototype (11.5%) and Origio (10.7%) groups demonstrated a notable decrease, contrasting with Irvine (25.8%). Molecular assessment revealed a significant elevation in AT2R protein levels in the prototype medium (59%), compared to other media. Additionally, an increase in PRDX2 protein levels was observed in the prototype medium, although this didn’t reach statistical significance. Serotonin-activated washing media for sperm preparation can be a suitable choice for selecting high-quality sperm in ART. A broader molecular analysis with a larger sample size is required to explore the mechanisms and effectiveness of using a serotonin-containing sperm-washing medium in routine ART.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abraham, M.C., Johannisson, A. and Morrell, J.M. (2016) Effect of sperm preparation on development of bovine blastocyst in vitro. Zygote 24(6), 825830. https://doi.org/10.1017/S0967199416000150 CrossRefGoogle ScholarPubMed
Agarwal, A., Gupta, S. and Sikka, S. (2006) The role of free radicals and antioxidants in reproduction. Current Opinion in Obstetrics and Gynecology 18(3), 325332. https://doi.org/10.1097/01.gco.0000193003.58158.4e CrossRefGoogle ScholarPubMed
Agarwal, A., Virk, G., Ong, C. and du Plessis, S.S. (2014) Effect of oxidative stress on male reproduction. The World Journal of Men’s Health 32(1), 117.CrossRefGoogle ScholarPubMed
Aitken, R.J. and Baker, M.A. (2006) Oxidative stress, sperm survival and fertility control. Molecular and Cellular Endocrinology 250(1–2), 6669. https://doi.org/10.1016/j.mce.2005.12.026 CrossRefGoogle ScholarPubMed
Al-Dujaily, S.S., Al-Azzawi, K., Hussein, Z. and Al-Anii, B. (2017) A comparison between the effects of Global Sperm Washing® and FertiCult Flushing TM media on certain sperm function parameters of asthenozoospermic men. Journal of Biotechnology Research Center 11(2), 3741. https://doi.org/10.24126/jobrc.2017.11.2.519 CrossRefGoogle Scholar
Aprioku, J.S. (2013) Pharmacology of free radicals and the impact of reactive oxygen species on the testis. Journal of Reproduction and Infertility 14(4), 158172.Google ScholarPubMed
Assouline-Cohen, M., Ben-Porat, H. and Beitner, R. (1998) Activation of membrane skeleton-bound phosphofructokinase in erythrocytes induced by serotonin. Molecular Genetics and Metabolism 63(3), 235238. https://doi.org/10.1006/mgme.1997.2673 CrossRefGoogle ScholarPubMed
Aziz, N., Novotny, J., Oborna, I., Fingerova, H., Brezinova, J. and Svobodova, M. (2010) Comparison of chemiluminescence and flow cytometry in the estimation of reactive oxygen and nitrogen species in human semen. Fertility and Sterility 94(7), 26042608. https://doi.org/10.1016/j.fertnstert.2010.03.022 CrossRefGoogle ScholarPubMed
Baldini, D., Ferri, D., Baldini, G.M., Lot, D., Catino, A., Vizziello, D. and Vizziello, G. (2021) Sperm selection for ICSI: Do we have a winner? Cells 10(12), 3566. https://doi.org/10.3390/CELLS10123566 CrossRefGoogle ScholarPubMed
Berger, M., Gray, J.A. and Roth, B.L. (2009) The expanded biology of serotonin. Annual Review of Medicine 60, 355366. https://doi.org/10.1146/annurev.med.60.042307.110802 CrossRefGoogle ScholarPubMed
Bui, A.D., Sharma, R., Henkel, R. and Agarwal, A. (2018) Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 50(8), e13012. https://doi.org/10.1111/and.13012 CrossRefGoogle ScholarPubMed
Chakraborty, S. and Saha, S. (2022) Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. Middle East Fertility Society Journal 27(1), 4. https://doi.org/10.1186/s43043-022-00094-7 CrossRefGoogle Scholar
De Los Santos, M.J., Apter, S., Coticchio, G., Debrock, S., Lundin, K., Plancha, C.E., Prados, F., Rienzi, L., Verheyen, G., Woodward, B. and Vermeulen, N. (2016) Revised guidelines for good practice in IVF laboratories (2015). Human Reproduction 31(4), 685686. https://doi.org/10.1093/humrep/dew016 Google ScholarPubMed
De Ponti, F. (2004) Pharmacology of serotonin: What a clinician should know. Gut 53(10), 15201535. https://doi.org/10.1136/gut.2003.035568 CrossRefGoogle ScholarPubMed
Díaz-Ramos, J., Flores-Flores, M., Ayala, M.E. and Aragón-Martínez, A. (2018) Impaired serotonin communication during juvenile development in rats diminishes adult sperm quality. Systems Biology in Reproductive Medicine 64(5), 340347. https://doi.org/10.1080/19396368.2018.1472825 CrossRefGoogle ScholarPubMed
Dogan, S. (2024) Assessing the efficacy of a novel sperm-washing medium enriched with serotonin, L-carnitine, and coenzyme Q10: a prospective cohort study. Asian Journal of Andrology, 10-4103. https://doi.org/10.4103/aja202425)Google Scholar
Escada-Rebelo, S., Mora, F., Sousa, A., Almeida-Santos, T., Paiva, A. and Ramalho-Santos, J. (2020) Fluorescent probes for the detection of reactive oxygen species in human spermatozoa. Asian Journal of Andrology 22(5), 465471. https://doi.org/10.4103/aja.aja_132_19 Google ScholarPubMed
Fácio, C.L., Previato, L.F., Machado-Paula, L.A., Matheus, P.C.S. and Araújo Filho, E. (2016) Comparison of two sperm processing techniques for low complexity assisted fertilization: Sperm washing followed by swim-up and discontinuous density gradient centrifugation. Jornal Brasileiro de Reproducao Assistida 20(4), 206. https://doi.org/10.5935/1518-0557.20160040 Google ScholarPubMed
Fanaei, H., Khayat, S., Halvaei, I., Ramezani, V., Azizi, Y., Kasaeian, A., Mardaneh, J., Parvizi, M.R. and Akrami, M. (2014) Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iranian Journal of Reproductive Medicine 12(2), 103.Google ScholarPubMed
Fang, Y. and Zhong, R. (2020) Effects of oxidative stress on spermatozoa and male infertility. Free Radical Medicine and Biology 10. https://doi.org/10.5772/intechopen.86585 Google Scholar
Ferramosca, A., Pinto Provenzano, S., Montagna, D.D., Coppola, L. and Zara, V. (2013) Oxidative stress negatively affects human sperm mitochondrial respiration. Urology 82(1), 7883. https://doi.org/10.1016/j.urology.2013.03.058 CrossRefGoogle ScholarPubMed
Foresta, C., Mioni, R., Rossato, M., Varotto, A. and Zorzi, M. (1991) Evidence for the involvement of sperm angiotensin converting enzyme in fertilization. International Journal of Andrology 14(5), 333339. https://doi.org/10.1111/j.1365-2605.1991.tb01101.x CrossRefGoogle ScholarPubMed
Frungieri, M.B., Zitta, K., Pignataro, O.P., Gonzalez-Calvar, S.I. and Calandra, R.S. (2002) Interactions between testicular serotoninergic, catecholaminergic, and corticotropin-releasing hormone systems modulating cAMP and testosterone production in the golden hamster. Neuroendocrinology 76(1), 3546. https://doi.org/10.1159/000063682 CrossRefGoogle ScholarPubMed
Fujinoki, M. (2011) Serotonin-enhanced hyperactivation of hamster sperm. Reproduction 142(2), 255. https://doi.org/10.1530/REP-11-0074 CrossRefGoogle ScholarPubMed
Gianzo, M., Muñoa-Hoyos, I., Urizar-Arenaza, I., Larreategui, Z., Quintana, F., Garrido, N., Subirán, N. and Irazusta, J. (2016) Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Fertility and Sterility 105(3), 608616. https://doi.org/10.1016/j.fertnstert.2015.11.004 CrossRefGoogle Scholar
Gianzo, M. and Subirán, N. (2020). Regulation of male fertility by the renin-angiotensin system. International Journal of Molecular Sciences 21(21), 7943. https://doi.org/10.3390/ijms21217943 CrossRefGoogle ScholarPubMed
Gottardo, F. and Kliesch, S. (2011) Semen analysis: spermiogram according to WHO 2010 criteria. Der Urologe. Ausg. A 50(1), 101108.CrossRefGoogle ScholarPubMed
Hampton, M.B. and O’Connor, K.M. (2016) Peroxiredoxins and the regulation of cell death. Molecules and Cells 39(1), 7276. https://doi.org/10.14348/molcells.2016.2351 CrossRefGoogle ScholarPubMed
Henkel, R.R. and Schill, W.B. (2003) Sperm preparation for ART. Reproductive Biology and Endocrinology 1, 122. https://doi.org/10.1186/1477-7827-1-108 CrossRefGoogle ScholarPubMed
Jiménez-Trejo, F., León-Galván, M.Á., Martínez-Méndez, L.A., Tapia-Rodríguez, M., Mendoza-Rodríguez, C.A., González-Santoyo, I., López-Wilchis, R., Vela-Hinojosa, C., Baranda-Avila, N. and Cerbón, M. (2013) Serotonin in testes of bat Myotis velifer during annual reproductive cycle: Expression, localization, and content variations. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 319(5), 249258. https://doi.org/10.1002/jez.1789 CrossRefGoogle ScholarPubMed
Jimeńez-Trejo, F., Tapia-Rodriǵuez, M., Cerboń, M., Kuhn, D.M., Manjarrez-Gutieŕrez, G., Mendoza-Rodríguez, C.A. and Picazo, O. (2012) Evidence of 5-HT components in human sperm: Implications for protein tyrosine phosphorylation and the physiology of motility. Reproduction 144(6), 677. https://doi.org/10.1530/REP-12-0145 CrossRefGoogle Scholar
Jixiang, Z., Lianmei, Z., Yanghua, Z. and Huiying, X. (2022) Relationship of sperm motility with clinical outcome of percutaneous epididymal sperm aspiration–intracytoplasmic sperm injection in infertile males with congenital domestic absence of vas deferens: a retrospective study. Zygote 30(2), 234238. https://doi.org/10.1017/S0967199421000587 CrossRefGoogle ScholarPubMed
Kim, E.K., Kim, E.H., Kim, E.A., Lee, K.A., Shin, J.E. and Kwon, H. (2015) Comparison of the effect of different media on the clinical outcomes of the density-gradient centrifugation/swim-up and swim-up methods. Clinical and Experimental Reproductive Medicine 42(1), 2229. https://doi.org/10.5653/cerm.2015.42.1.22 CrossRefGoogle ScholarPubMed
Koppers, A.J., De Iuliis, G.N., Finnie, J.M., McLaughlin, E.A. and Aitken, R.J. (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. The Journal of Clinical Endocrinology & Metabolism 93(8), 31993207.CrossRefGoogle ScholarPubMed
Levine, H., Jørgensen, N., Martino-Andrade, A., Mendiola, J., Weksler-Derri, D., Mindlis, I., Pinotti, R. and Swan, S.H. (2017) Temporal trends in sperm count: A systematic review and meta-regression analysis. Human Reproduction Update 23(6), 646659. https://doi.org/10.1093/humupd/dmx022 CrossRefGoogle ScholarPubMed
Liu, J., Zhu, P., Wang, W.T., Li, N., Liu, X., Shen, X.F., Wang, Y.W. and Li, Y. (2016) TAT-peroxiredoxin 2 fusion protein supplementation improves sperm motility and DNA integrity in sperm samples from asthenozoospermic men. Journal of Urology 195(3), 706712. https://doi.org/10.1016/j.juro.2015.11.019 CrossRefGoogle ScholarPubMed
MacLean, M.R., Herve, P., Eddahibi, S. and Adnot, S. (2000) 5-Hydroxytryptamine and the pulmonary circulation: Receptors, transporters and relevance to pulmonary arterial hypertension. British Journal of Pharmacology 131(2), 161. https://doi.org/10.1038/sj.bjp.0703570 CrossRefGoogle ScholarPubMed
Ménézo, Y., Entezami, F., Lichtblau, I., Belloc, S., Cohen, M. and Dale, B. (2014) Oxidative stress and fertility: Incorrect assumptions and ineffective solutions? Zygote 22(1), 8090. https://doi.org/10.1017/S0967199412000263 CrossRefGoogle ScholarPubMed
Miki, K. (2007) Energy metabolism and sperm function. Society of Reproduction and Fertility supplement 65, 309325.Google ScholarPubMed
Morielli, T. and O’Flaherty, C. (2015) Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction 149(1), 113123. https://doi.org/10.1530/REP-14-0240 CrossRefGoogle ScholarPubMed
Mukai, C. and Okuno, M. (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biology of Reproduction 71(2), 540547. https://doi.org/10.1095/biolreprod.103.026054 CrossRefGoogle Scholar
Neumann, J., Hofmann, B., Dhein, S. and Gergs, U. (2023) Cardiac roles of serotonin (5-HT) and 5-HT-receptors in health and disease. International Journal of Molecular Sciences 24(5), 4765. https://doi.org/10.3390/ijms24054765 CrossRefGoogle ScholarPubMed
Nowicka-Bauer, K. and Nixon, B. (2020) Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants 9(2), 134. https://doi.org/10.3390/antiox9020134 CrossRefGoogle ScholarPubMed
O’Flaherty, C. (2014a) Peroxiredoxins: Hidden players in the antioxidant defence of human spermatozoa. Basic and Clinical Andrology 24, 110. https://doi.org/10.1186/2051-4190-24-4 Google ScholarPubMed
O’Flaherty, C. (2014b) The enzymatic antioxidant system of human spermatozoa. Advances in Andrology 2014(1), 626374. https://doi.org/10.1155/2014/626374 CrossRefGoogle Scholar
Oseguera-López, I., Ruiz-Díaz, S., Ramos-Ibeas, P. and Pérez-Cerezales, S. (2019) Novel techniques of sperm selection for improving IVF and ICSI outcomes. Frontiers in Cell and Developmental Biology 7, 298. https://doi.org/10.3389/fcell.2019.00298 CrossRefGoogle ScholarPubMed
Pascolo, L., Zito, G., Zupin, L., Luppi, S., Giolo, E., Martinelli, M., De Rocco, D., Crovella, S. and Ricci, G. (2020) Renin angiotensin system, COVID-19 and male fertility: Any risk for conceiving? Microorganisms 8(10), 1492. https://doi.org/10.3390/microorganisms8101492 CrossRefGoogle ScholarPubMed
Pourhamzeh, M., Fahimeh, M.G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R., Ahadi, R., Mohammad, J.T. (2022) The roles of serotonin in neuropsychiatric disorders background: serotonin: a regulator in CNS and PNS. Cellular and Molecular Neurobiology 42(6), 16711692.CrossRefGoogle Scholar
Raad, G., Mansour, J., Ibrahim, R., Azoury, J., Azoury, J., Mourad, Y., Fakih, C. and Azoury, J. (2019) What are the effects of vitamin C on sperm functional properties during direct swim-up procedure? Zygote 27(2), 6977. https://doi.org/10.1017/S0967199419000030 CrossRefGoogle ScholarPubMed
Shahar, S., Wiser, A., Ickowicz, D., Lubart, R., Shulman, A. and Breitbart, H. (2011) Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. Human Reproduction 26(9), 22742282. https://doi.org/10.1093/humrep/der232 CrossRefGoogle ScholarPubMed
Stephens, R.E. and Prior, G. (1992) Dynein from serotonin-activated cilia and flagella: Extraction characteristics and distinct sites for cAMP-dependent protein phosphorylation. Journal of Cell Science 103(4), 9991012. https://doi.org/10.1242/jcs.103.4.999 CrossRefGoogle ScholarPubMed
Torres-Flores, V., Hernández-Rueda, Y.L., Neri-Vidaurri, P.D.C., Jiménez-Trejo, F., Calderón-Salinas, V., Molina-Guarneros, J.A. and González-Marttínez, M.T. (2008) Activation of protein kinase A stimulates the progesterone-induced calcium influx in human sperm exposed to the phosphodiesterase inhibitor papaverine. Journal of Andrology 29(5), 549557. https://doi.org/10.2164/jandrol.107.004614 CrossRefGoogle Scholar
Vaughan, D.A., Sakkas, D. and Gardner, D.K. (2019) Sperm selection methods in the 21st century. Biology of Reproduction 101(6), 10761082. https://doi.org/10.1093/biolre/ioz032 CrossRefGoogle ScholarPubMed
Vigolo, V., Giaretta, E., Da Dalt, L., Damiani, J., Gabai, G., Bertuzzo, F. and Falomo, M.E. (2022) Relationships between biomarkers of oxidative stress in seminal plasma and sperm motility in bulls before and after cryopreservation. Animals 12(19), 2534. https://doi.org/10.3390/ani12192534 CrossRefGoogle ScholarPubMed
Vinson, G.P., Puddefoot, J.R., Ho, M.M., Barker, S., Mehta, J., Saridogan, E. and Djahanbakhch, O. (1995) Type 1 angiotensin II receptors in rat and human sperm. Journal of Endocrinology 144(2), 369378. https://doi.org/10.1677/joe.0.1440369 CrossRefGoogle ScholarPubMed
Wennemuth, G., Babcock, D.F. and Hille, B. (1999) Distribution and function of angiotensin II receptors in mouse spermatozoa. Andrologia 31(5), 323325.Google ScholarPubMed
Wood, Z.A., Schröder, E., Harris, J.R. and Poole, L.B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences 28(1), 3240. https://doi.org/10.1016/S0968-0004(02)00003-8 CrossRefGoogle ScholarPubMed
Xu, J., He, K., Zhou, Y., Zhao, L., Lin, Y., Huang, Z., Xie, N., Yue, J. and Tang, Y. (2022) The effect of SSRIs on Semen quality: A systematic review and meta-analysis. Frontiers in Pharmacology 13, 911489. https://doi.org/10.3389/fphar.2022.911489 CrossRefGoogle ScholarPubMed
Yilmazer, Y.B., Koganezawa, M., Sato, K., Xu, J. and Yamamoto, D. (2016) Serotonergic neuronal death and concomitant serotonin deficiency curb copulation ability of Drosophila platonic mutants. Nature Communications 7(1), 13792. https://doi.org/10.1038/ncomms13792 CrossRefGoogle ScholarPubMed
Yilmazer, Y., Moshfeghi, E., Cetin, F. and Findikli, N. (2024) In vitro effects of the combination of serotonin, selenium, zinc, and vitamins D and E supplementation on human sperm motility and reactive oxygen species production. Zygote 32(2), 154160. https://doi.org/10.1017/S0967199424000029 CrossRefGoogle Scholar
Zollner, U., Zollner, K.P., Dietl, J. and Steck, T. (2001) Semen sample collection in medium enhances the implantation rate following ICSI in patients with severe oligoasthenoteratozoospermia. Human Reproduction 16(6), 11101114. https://doi.org/10.1093/humrep/16.6.1110 CrossRefGoogle ScholarPubMed