Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T22:20:20.405Z Has data issue: false hasContentIssue false

Investigation of BAK, BAX and MAD2L1 gene expression in human aneuploid blastocysts

Published online by Cambridge University Press:  23 November 2023

M. Ahmed
Affiliation:
Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
H. Aytacoglu
Affiliation:
Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
O. Coban
Affiliation:
British Cyprus IVF Hospital, Embryology Lab, Nicosia, Cyprus
P. Tulay*
Affiliation:
Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus Near East University, DESAM Research Institute, Nicosia, Cyprus Near East University, Center of Excellence, Genetics and Cancer Diagnosis-Research Center, Nicosia, Cyprus
*
Corresponding author: Pinar Tulay; Email: [email protected]

Summary

Maintaining genomic stability is crucial for normal development. At earlier stages of preimplantation development, as the embryonic genome activation is not fully completed, the embryos may be more prone to abnormalities. Aneuploidies are one of the most common genetic causes of implantation failure or first-trimester miscarriages. Apoptosis is a crucial mechanism to eliminate damaged or abnormal cells from the organism to enable healthy growth. Therefore, this study aimed to determine the relationship between the expression levels of genes involved in apoptosis in human aneuploid and euploid blastocysts. In total, 32 human embryos obtained from 21 patients were used for this study. Trophectoderm biopsies were performed and next-generation screening was carried out for aneuploidy screening. Total RNA was extracted from each blastocyst separately and cDNA was synthesized. Gene expression levels were evaluated using RT-PCR. The statistical analysis was performed to evaluate the gene expression level variations in the euploid and aneuploid embryos, respectively. The expression level of the BAX gene was significantly different between the aneuploid and euploid samples. BAX expression levels were found to be 1.5-fold lower in aneuploid cells. However, the expression levels of BAK and MAD2L1 genes were similar in each group. This study aimed to investigate the possible role of genes involved in apoptosis and aneuploidy mechanisms. The findings of this investigation revealed that the BAX gene was expressed significantly differently between aneuploid and euploid embryos. Therefore, it is possible that the genes involved in the apoptotic pathway have a role in the aneuploidy mechanism.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. (2011). The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reproduction, 26(6), 12701283.CrossRefGoogle Scholar
Bazrgar, M., Gourabi, H., Yazdi, P. E., Vazirinasab, H., Fakhri, M., Hassani, F. and Valojerdi, M. R. (2014). DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 175(1), 152156. doi: 10.1016/J.EJOGRB.2014.01.010 CrossRefGoogle ScholarPubMed
Brito, D. A. and Rieder, C. L. (2006). Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Current Biology, 16(12), 11941200. doi: 10.1016/J.CUB.2006.04.043 CrossRefGoogle ScholarPubMed
Cheung, H. W., Jin, D. Y., Ling, M. T., Wong, Y. C., Wang, Q., Tsao, S. W. and Wang, X. (2005). Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells. Cancer Research, 65(4), 14501458. doi: 10.1158/0008-5472.CAN-04-0567 CrossRefGoogle ScholarPubMed
Chiang, T., Schultz, R. M. and Lampson, M. A. (2012). Meiotic origins of maternal age-related aneuploidy. Biology of Reproduction, 86(1), 17. doi: 10.1095/biolreprod.111.094367 CrossRefGoogle ScholarPubMed
Ciray, H. N., Aksoy, T., Goktas, C., Ozturk, B. and Bahceci, M. (2012). Time-lapse evaluation of human embryo development in single versus sequential culture media-a sibling oocyte study. Journal of Assisted Reproduction and Genetics, 29(9), 891900. doi: 10.1007/s10815-012-9818-7 CrossRefGoogle ScholarPubMed
Clarke, P. R. and Allan, L. A. (2009). Cell-cycle control in the face of damage – A matter of life or death. Trends in Cell Biology, 19(3), 8998. doi: 10.1016/J.TCB.2008.12.003 CrossRefGoogle ScholarPubMed
Coban, O., Serdarogullari, M., Yarkiner, Z. and Serakinci, N. (2020). Investigating the level of DNA double-strand break in human spermatozoa and its relation to semen characteristics and IVF outcome using phospho-histone H2AX antibody as a biomarker. Andrology, 8(2), 421426. doi: 10.1111/ANDR.12689 CrossRefGoogle ScholarPubMed
Dumoulin, J. C. M., Coonen, E., Bras, M., Van Wissen, L. C. P., Ignoul-Vanvuchelen, R., Bergers-Jansen, J. M., Derhaag, J. G., Geraedts, J. P. M. and Evers, J. L. H. (2000). Comparison of in-vitro development of embryos originating from either conventional in-vitro fertilization or intracytoplasmic sperm injection. Human Reproduction, 15(2), 402409. doi: 10.1093/HUMREP/15.2.402 CrossRefGoogle ScholarPubMed
Fragouli, E., Alfarawati, S., Spath, K., Jaroudi, S., Sarasa, J., Enciso, M. and Wells, D. (2013). The origin and impact of embryonic aneuploidy. Human Genetics, 132(9), 10011013. doi: 10.1007/s00439-013-1309-0 CrossRefGoogle ScholarPubMed
Gardner, D. K. and Schoolcraft, W. B. (1999). Culture and transfer of human blastocysts. Current Opinion in Obstetrics and Gynecology, 11(3), 307311. doi: 10.1097/00001703-199906000-00013 CrossRefGoogle ScholarPubMed
Jaroudi, S. and SenGupta, S. (2007). DNA repair in mammalian embryos. Mutation Research, 635(1), 5377. doi: 10.1016/J.MRREV.2006.09.002 CrossRefGoogle ScholarPubMed
Jaroudi, S., Kakourou, G., Cawood, S., Doshi, A., Ranieri, D. M., Serhal, P., Harper, J. C. and SenGupta, S. B. (2009). Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Human Reproduction, 24(10), 26492655. doi: 10.1093/HUMREP/DEP224 CrossRefGoogle ScholarPubMed
Kakourou, G., Jaroudi, S., Tulay, P., Heath, C., Serhal, P., Harper, J. C. and SenGupta, S. B. (2013). Investigation of gene expression profiles before and after embryonic genome activation and assessment of functional pathways at the human metaphase II oocyte and blastocyst stage. Fertility and Sterility, 99(3), 803814.e23. doi: 10.1016/J.FERTNSTERT.2012.10.036 CrossRefGoogle ScholarPubMed
Khokhlova, E. V., Fesenko, Z. S., Sopova, J. V. and Leonova, E. I. (2020). Features of DNA repair in the early stages of mammalian embryonic development. Genes, 11(10), 1138. doi: 10.3390/GENES11101138 CrossRefGoogle ScholarPubMed
Lagalla, C., Tarozzi, N., Sciajno, R., Wells, D., Di Santo, M., Nadalini, M., Distratis, V. and Borini, A. (2017). Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reproductive Biomedicine Online, 34(2), 137146. doi: 10.1016/J.RBMO.2016.11.008 CrossRefGoogle ScholarPubMed
Lagalla, C., Coticchio, G., Sciajno, R., Tarozzi, N., Zacà, C. and Borini, A. (2020). Alternative patterns of partial embryo compaction: Prevalence, morphokinetic history and possible implications. Reproductive Biomedicine Online, 40(3), 347354. doi: 10.1016/J.RBMO.2019.11.011 CrossRefGoogle ScholarPubMed
Liu, H. C., He, Z. Y., Mele, C. A., Veeck, L. L., Davis, O. and Rosenwaks, Z. (2000). Expression of apoptosis-related genes in human oocytes and embryos. Journal of Assisted Reproduction and Genetics, 17(9), 521533. doi: 10.1023/a:1009497925862 CrossRefGoogle ScholarPubMed
Lord, T. and Aitken, R. J. (2015). Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Developmental Biology, 406(1), 113. doi: 10.1016/j.ydbio.2015.07.024,CrossRefGoogle ScholarPubMed
Ma, H., Marti-Gutierrez, N., Park, S. W., Wu, J., Lee, Y., Suzuki, K., Koski, A., Ji, D., Hayama, T., Ahmed, R., Darby, H., Van Dyken, C., Li, Y., Kang, E., Park, A. R., Kim, D., Kim, S. T., Gong, J., et al. (2017). Correction of a pathogenic gene mutation in human embryos. Nature 548(7668), 413419. doi: 10.1038/nature23305 CrossRefGoogle ScholarPubMed
Ma, Y., Zhang, P., Wang, F., Yang, J., Yang, Z. and Qin, H. (2010). The relationship between early embryo development and tumourigenesis. Journal of Cellular and Molecular Medicine, 14(12), 26972701. doi: 10.1111/j.1582-4934.2010.01191.x CrossRefGoogle ScholarPubMed
Maciejewska, Z., Polanski, Z., Kisiel, K., Kubiak, J. Z. and Ciemerych, M. A. (2009). Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction, 137(6), 931942. doi: 10.1530/REP-09-0011 CrossRefGoogle ScholarPubMed
MacLennan, M., Crichton, J. H., Playfoot, C. J. and Adams, I. R. (2015). Oocyte development, meiosis and aneuploidy. Seminars in Cell and Developmental Biology, 45, 6876. doi: 10.1016/J.SEMCDB.2015.10.005 CrossRefGoogle ScholarPubMed
Mantikou, E., Wong, K. M., Repping, S. and Mastenbroek, S. (2012). Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochimica et Biophysica Acta, 1822(12), 19211930. doi: 10.1016/J.BBADIS.2012.06.013 CrossRefGoogle ScholarPubMed
Manzo, G. (2019). Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: A new point of view. Frontiers in Cell and Developmental Biology, 7(MAR), 20. doi: 10.3389/fcell.2019.00020 CrossRefGoogle ScholarPubMed
Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., Murthy Madiraju, S. R., Goulet, D., Viallet, J., Bélec, L., Billot, X., Acoca, S., Purisima, E., Wiegmans, A., Cluse, L., Johnstone, R. W., Beauparlant, P. and Shore, G. C. (2007). Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 1951219517. doi: 10.1073/pnas.0709443104 CrossRefGoogle ScholarPubMed
Opferman, J. T. and Kothari, A. (2018). Anti-apoptotic BCL-2 family members in development. Cell Death and Differentiation, 25(1), 3745. doi: 10.1038/CDD.2017.170 CrossRefGoogle ScholarPubMed
Orr, B., Godek, K. M. and Compton, D. (2015). Aneuploidy. Current Biology, 25(13), R538R542. doi: 10.1016/J.CUB.2015.05.010 CrossRefGoogle ScholarPubMed
Park, A., Oh, H. J., Ji, K., Choi, E. M., Kim, D., Kim, E. and Kim, M. K. (2022). Effect of passage number of conditioned medium collected from equine amniotic fluid mesenchymal stem cells: Porcine oocyte maturation and embryo development. International Journal of Molecular Sciences, 23(12), 6569. doi: 10.3390/IJMS23126569 CrossRefGoogle ScholarPubMed
Pop, C., Timmer, J., Sperandio, S. and Salvesen, G. S. (2006). The apoptosome activates caspase-9 by dimerization. Molecular Cell, 22(2), 269275. doi: 10.1016/J.MOLCEL.2006.03.009 CrossRefGoogle ScholarPubMed
Riedl, S. J. and Salvesen, G. S. (2007). The apoptosome: Signalling platform of cell death. Nature Reviews. Molecular Cell Biology, 8(5), 405413. doi: 10.1038/nrm2153 CrossRefGoogle ScholarPubMed
Seli, E., Gardner, D. K., Schoolcraft, W. B., Moffatt, O. and Sakkas, D. (2004). Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertility and Sterility, 82(2), 378383. doi: 10.1016/j.fertnstert.2003.12.039 CrossRefGoogle ScholarPubMed
Shi, Q., Hu, M., Luo, M., Liu, Q., Jiang, F., Zhang, Y., Wang, S., Yan, C. and Weng, Y. (2011). Reduced expression of Mad2 and Bub1 proteins is associated with spontaneous miscarriages. Molecular Human Reproduction, 17(1), 1421. doi: 10.1093/MOLEHR/GAQ065 CrossRefGoogle ScholarPubMed
Shoukir, Y., Chardonnens, D., Campana, A. and Sakkas, D. (1998). Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: A paternal influence? Human Reproduction, 13(6), 16321637. doi: 10.1093/HUMREP/13.6.1632 CrossRefGoogle ScholarPubMed
Singla, S., Iwamoto-Stohl, L. K., Zhu, M. and Zernicka-Goetz, M. (2020). Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nature Communications, 11(1), 115, 2958. doi: 10.1038/s41467-020-16796-3 CrossRefGoogle Scholar
Smith, D. G. and Sturmey, R. G. (2013). Parallels between embryo and cancer cell metabolism. Biochemical Society Transactions, 41(2), 664669. doi: 10.1042/BST20120352 CrossRefGoogle ScholarPubMed
Taylor, R. C., Cullen, S. P. and Martin, S. J. (2008). Apoptosis: Controlled demolition at the cellular level. Nature Reviews. Molecular Cell Biology, 9(3), 231241. doi: 10.1038/nrm2312 CrossRefGoogle ScholarPubMed
Vartak, S. V., Iyer, D., Santhoshkumar, T. R., Sharma, S., Mishra, A., Goldsmith, G., Srivastava, M., Srivastava, S., Karki, S. S., Surolia, A., Choudhary, B. and Raghavan, S. C. (2017). Novel BCL2 inhibitor, Disarib induces apoptosis by disruption of BCL2-BAK interaction. Biochemical Pharmacology, 131, 1628. doi: 10.1016/J.BCP.2017.02.015 CrossRefGoogle ScholarPubMed
Vogel, C., Hager, C. and Bastians, H. (2007). Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Research, 67(1), 339345. doi: 10.1158/0008-5472.CAN-06-2548 CrossRefGoogle ScholarPubMed
Wang, L., Yin, F., Du, Y., Chen, B., Liang, S., Zhang, Y., Du, W., Wu, K., Ding, J. and Fan, D. (2010). Depression of MAD2 inhibits apoptosis and increases proliferation and multidrug resistance in gastric cancer cells by regulating the activation of phosphorylated survivin. Tumour Biology, 31(3), 225232. doi: 10.1007/s13277-010-0036-6 CrossRefGoogle ScholarPubMed
Wells, D., Bermúdez, M. G., Steuerwald, N., Malter, H. E., Thornhill, A. R. and Cohen, J. (2005). Association of abnormal morphology and altered gene expression in human preimplantation embryos. Fertility and Sterility, 84(2), 343355. doi: 10.1016/J.FERTNSTERT.2005.01.143 CrossRefGoogle ScholarPubMed
Zhang, X., Xie, X. feng, Li, A., Song, W., Li, C., Li, F., Li, X. zhen, Fan, X. yan, Zhou, C. yin, Wang, G., Sun, Q. Y. and Ou, X. H. (2023). USP7 reduction leads to developmental failure of mouse early embryos. Experimental Cell Research, 427(2), 113605. doi: 10.1016/J.YEXCR.2023.113605 CrossRefGoogle ScholarPubMed