Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T17:35:08.872Z Has data issue: false hasContentIssue false

Inseminating dose for the artificial fertilization of Brycon amazonicus (Teleostei: Characidae)

Published online by Cambridge University Press:  15 January 2021

Rosilane Gomes de Souza de Oliveira*
Affiliation:
Federal University of Amazonas (UFAM), Faculty of Agricultural Sciences, Department of Fisheries Sciences, Manaus, Amazonas, Brazil
Marle Angélica Villacorta-Correa
Affiliation:
Federal University of Amazonas (UFAM), Faculty of Agricultural Sciences, Department of Fisheries Sciences, Manaus, Amazonas, Brazil
*
Author for correspondence: Rosilane Gomes de Souza de Oliveira. Federal University of Amazonas (UFAM), Faculty of Agricultural Sciences, Department of Fisheries Sciences, Av. Gen. Rodrigo Octávio Jordão Ramos, 3000, CEP: 69077-000, Manaus, Amazonas, Brazil. Tel: +55 923305 1797. Fax: +55 923305 1797. E-mail: [email protected]

Summary

Knowledge of the sperm–oocyte ratio in fish fertilization serves as the basis for studies on artificial reproduction and gamete manipulation. The aim of this study was to determine the minimum insemination dose for Brycon amazonicus oocyte fertilization. Female and male gametes were used and tested with the following doses of spermatozoa oocyte–1 ml–1: 10,000, 20,000, 40,000, 60,000 and 80,000 (in triplicate). Fertilization rates were calculated and estimated from the regression equation by applying the segmented regression model ‘Linear Response Plateau’ to determine the appropriate proportion of gametes. Based on the equation Ŷ = 14.3415 + 0.0007836X, the fertilization rate increased up to 63.34% as it reached a plateau with a proportion of 62,524 spermatozoa oocyte–1 ml–1, which is the minimum insemination dose recommended for artificial insemination of the species.

Type
Short Communication
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arias, JA (2006). Estado actual del conocimiento sobre el yamú, Brycon amazonicus . Rev Colomb Cienc Pec 19, 125–33.Google Scholar
Bashiyo-Silva, C, da Silva Costa, R, de Castro Ribeiro, D, Senhorini, JA, Veríssimo-Silveira, R and Ninhaus-Silveira, A (2015). Hormonal induction of Brycon cephalus (Characiformes, Characidae) to spermiation using d-ala6, pro9net-mGnRH + metoclopramide. Zygote 24, 319–25.CrossRefGoogle ScholarPubMed
Beirão, J, Boulais, M, Gallego, V, O’Brien, JK, Peixoto, S, Robeck, TR and Cabrita, E (2019). Sperm handling in aquatic animals for artificial reproduction. Theriogenology 133, 161–78.CrossRefGoogle ScholarPubMed
Bernardino, G, Senhorini, JA, Fontes, NA, Bock, CL and Mendonça, JOJ (1993). Propagação artificial do matrinchã Brycon cephalus (Günther, 1869) (Teleostei, Characidae). Boletim Técnico CEPTA 6, 19.Google Scholar
Billard, R and Cosson, MP (1992). Some problems related to the assessment of sperm motility in freshwater fish. J Exp Zool 261, 122–31.CrossRefGoogle Scholar
Billard, R, Cosson, J, Perchec, G and Linhart, O (1995). Biology of sperm and artificial reproduction in carp. Aquaculture 129, 95112.CrossRefGoogle Scholar
Bombardelli, RA, Mörschbächer, EF, Campagnolo, R, Sanches, EA and Syperreck, MA (2006). Dose inseminante para fertilização artificial de ovócitos de jundiá cinza, Rhamdia quelen (Quoy & Gaimardm, 1824). Rev Bras Zootecn 35, 1251–7.CrossRefGoogle Scholar
Chereguini, O, De La Banda, IG, Rasines, I and Fernandez, A (1999). Artificial fertilization in turbot, Scophthalmus maximus (L.): different methods and determination of the optimal sperm–egg ratio. Aquac Res 30, 319–24.CrossRefGoogle Scholar
Colégio Brasileiro de Reprodução, Animal (2013). Manual para exames andrológicos e avaliação de sêmen animal. 3rd edn. Belo Horizonte: CBRA. 104 pp.Google Scholar
Cruz-Casallas, PE, Medina-Robles, VM and Velasco-Santamaría, YM (2006). Evaluación de diferentes crioprotectores para la crioconservación de espermatozoides de yamú (Brycon amazonicus). Rev Colomb Cienc Pec 19, 152–9.Google Scholar
Cruz-Casallas, PE and Velasco-Santamaría, YM (2004). Crioconservación de semen de yamú (Brycon siebenthalae): calidad seminal, dosis inseminante y sistemas de empaque. In Memorias II Congreso Colombiano de Acuicultura. Universidad de los Llanos (IALL). Villavicencio, Colombia. 27–34 pp.Google Scholar
Denniston, RS, Michelet, S and Godke, RA (2000). Principles of cryopreservation. In: Tiersch, TR and Mazik, PM (eds). Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 5974.Google Scholar
Gage, MJ, Macfarlane, CP, Yeates, S, Ward, RG, Searle, JB and Parker, GA (2004). Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol 14, 44–7.Google ScholarPubMed
Hainfellner, P, De Souza, TG, Muñoz, ME, Freitas, GA and Batlouni, SR (2012). Spawning failure in Brycon amazonicus may be associated with ovulation and not with final oocyte maturation. Arq Bras Med Vet Zoo 64, 515–7.CrossRefGoogle Scholar
Honczaryk, A and Inoue, LAKA (2009). Produção comercial de alevinos de matrinxã na Amazônia Ocidental. Embrapa Amazônia Ocidental-Circular Técnica (INFOTECA-E).Google Scholar
Lahnsteiner, F (2000). Semen cryopreservation in the Salmonidae and in the Northern pike. Aquac Res 31, 245–58.CrossRefGoogle Scholar
Leite, LV, Melo, MA, Oliveira, FC, Pinheiro, JP, Campello, CC, Nunes, JF and Salmito-Vanderley, CS (2013). Determination of insemination dose and embryonic development in the artificial fertilization of tambaqui (Colossoma macropomum). Arq Bras Med Vet Zoo 65, 421–9.CrossRefGoogle Scholar
Levanduski, MJ and Cloud, JG (1988). Rainbow trout (Salmo gairdneri) semen: effect of non-motile sperm on fertility. Aquaculture 75, 171–9.CrossRefGoogle Scholar
Nakaghi, LSO, Neumann, E, Faustino, F, Mendes, JMR and de Braga, FM (2014). Moments of induced spawning and embryonic development of Brycon amazonicus (Teleostei, Characidae). Zygote 22, 549–57.CrossRefGoogle Scholar
Ninhaus-Silveira, A, Foresti, F, Veríssimo-Silveira, R and Senhorini, JA (2006). Seminal analysis, cryogenic preservation, and fertility in matrinxã fish, Brycon cephalus (Günther, 1869). Braz Arch Biol Techn 49, 651–9.CrossRefGoogle Scholar
Pardo-Carrasco, S, Suarez-Mahecha, H, Muñoz-Lara, D, Arias-Castellanos, J and Hernando, GIL (2002). Inducción de la ovulación y del desove del yamú, Brycon siebenthale, con implantes de mGnRH-a. Bol Inst Pesca 28, 1924.Google Scholar
Pereira-Santos, M, Shimoda, E, de Andrade, AFC, Silva, LA, Fujimoto, T, Senhorini, JA, Yasui, GS and Nakaghi, LSO (2017). Grooves surrounding the micropyle decrease the inseminating dose in fish. Zygote 25, 731–9.CrossRefGoogle ScholarPubMed
Romagosa, E, Narahara, MY, Borella, MI, Parreira, SF and Fenerich-Verani, N (1999). Ultrastructure of the germ cells in the testis of matrinxã, Brycon cephalus (Teleostei, Characidae). Tissue Cell 31, 540–4.CrossRefGoogle Scholar
Romagosa, E, Narahara, M, Borella, M and Fenerich-Verani, N (2001). Seleção e caracterização de fêmeas de matrinxã, Brycon cephalus, induzidas a reprodução. Bol Inst Pesca 27, 139–47.Google Scholar
Rurangwa, E, Kime, DE, Ollevier, F and Nash, JP (2004). The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234, 128.CrossRefGoogle Scholar
Sanches, EA, Bombardelli, RA, Baggio, DM and Souza, BED (2009). Dose inseminante para fertilização artificial de ovócitos de dourado. Rev Bras Zootecn 38, 2091–8.CrossRefGoogle Scholar
Shimoda, E, Andrade, DR, Vidal Júnior, MV, Godinho, HP and Yasui, GS (2007). Determination of the optimum ratio of spermatozoa per oocyte of the piabanha Brycon insignis (Pisces-Characidae). Arq Bras Med Vet Zoo 59, 877–82.CrossRefGoogle Scholar
Stoeckel, JN (2000). A method for viewing the germinal vesicle in oocytes of commercial catfishes. N Am J Aquacult 62, 240–7.2.3.CO;2>CrossRefGoogle Scholar
Suquet, M, Billard, R, Cosson, J, Normant, Y and Fauvel, C (1995). Artificial insemination in turbot (Scophthalmus maximus): determination of the optimal sperm to egg ratio and time of gamete contact. Aquaculture 133, 8390.CrossRefGoogle Scholar
Velasco-Santamaría, YM, Medina-Robles, VM and Cruz-Casallas, PE (2006). Cryopreservation of yamú (Brycon amazonicus) sperm for large scale fertilization. Aquaculture 256, 264–71.CrossRefGoogle Scholar
Vidal, LVO, Furuya, WMM, Graciano, TS, Schamber, CR, da Silva, LCR, dos Santos, LD and de Souza, SR (2007). Eugenol como anestésico para juvenis de matrinxã (‘Brycon cephalus’). Rev Bras Saúd Prod Anim 8, 335–42.Google Scholar
Woynarovich, E and Horváth, L (1983). A propagação artificial de peixes de águas tropicais; manual de extensão. Brasília: FAO/CODEVASF/CNPq.Google Scholar
Yasui, GS, Arias-Rodriguez, L, Fujimoto, T and Arai, K (2009). A sperm cryopreservation protocol for the loach Misgurnus anguillicaudatus and its applicability for other related species. Anim Reprod Sci 116, 335–45.CrossRefGoogle ScholarPubMed
Zaniboni-Filho, E and Barbosa, NDC (1996). Priming hormone administration to induce spawning of some Brazilian migratory fish. Rev Bras Biol 56, 655–9.Google Scholar
Zaniboni-Filho, E, Carvalho, JL, Villacorta-Correa, MA and Rezende, EK (1988). Caracterização morfológica da matrinxã, Brycon cephalus (Günther, 1869) (Teleostei: Characidae). Revista Brasileira Biologia 48, 4150.Google Scholar