Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:50:06.342Z Has data issue: false hasContentIssue false

Influence of temperature on larval ontogenesis of Geophagus brasiliensis (Quoy & Gaimard, 1824) (Pisces: Cichlidae)

Published online by Cambridge University Press:  08 April 2021

Marcelo Duarte Ventura Melo
Affiliation:
Programa de Pós-Graduação em Biologia de Vertebrados da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
Alessandro Loureiro Paschoalini
Affiliation:
Programa de Pós-Graduação em Biologia de Vertebrados da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
Nilo Bazzoli*
Affiliation:
Programa de Pós-Graduação em Biologia de Vertebrados da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
*
Author for correspondence: Nilo Bazzoli. Programa de Pós-Graduação em Biologia de Vertebrados da Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, CEP 30535-610, Belo Horizonte, MG, Brazil. Tel: +55 31 987972391. Email: [email protected]

Summary

Studies on the larval development of fish are essential for conservation and improvements in cultivation techniques. Geophagus brasiliensis popularly known as Cará has potential as a fish of interest in ornamental aquaculture. Wild adults of G. brasiliensis were kept in an aquarium for spontaneous reproduction. Newly hatched larvae were transferred to 5-litre aquaria at 22, 26 and 30°C until total yolk sac resorption. Histological slides were used for biometric analysis and monitoring of larval ontogenesis at different temperatures. Histologically, from the first to the fourth days it was possible to identify myomeres, optic vesicle, yolk syncytial layer, brain, heart and differentiation of the eye layers. From the fourth to the seventh days, it was possible to identify mandibular and gill cartilages, swim bladder, liver, prismatic epithelium with striated border in intestine and renal epithelium. All biometric measurements increased over the days, except height and length of the yolk sac, which gradually decreased until the complete resorption of the yolk sac that occurred on the fifth day at a temperature of 30°C, the sixth day at 26°C and the seventh day at 22°C. Morphological events at 30°C such as the reabsorption of the yolk sac, the appearance of cartilage in the branchial arches and differentiation of the layers of the eyes occurred faster compared with the other temperatures tested. Opening of the mouth and digestive tract occurred at a similar time on the fourth day in all temperatures.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, TF, Perrotti, PB, Meireles, WA and Bazzoli, N (2016). Initial development of Prochilodus hartii (Pisces: Prochilodontidae) submitted to induced reproduction. Zygote 24, 408–17.CrossRefGoogle ScholarPubMed
Abelha, MCF and Goulart, E (2004). Oportunismo trófico de Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae) no reservatório de Capivari, Estado do Paraná, Brasil. Acta Sci Biol Sci 26, 3745.CrossRefGoogle Scholar
Borçato, FL, Bazzoli, N and Sato, Y (2004). Embryogenesis and larval ontogeny of the ‘piau-gordura’, Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev Brasil Zool 21, 117–22.CrossRefGoogle Scholar
Cristina da Silva, R, Pereira Dos Santos, M, Senhorini, JA, Paes, MDCF, Valentin, FN, Fujimoto, T, do Nascimento, NF, Yasui, GS and Nakaghi, LSO (2017). The effect of temperature on the initial development of Brycon amazonicus Spix & Agassiz, 1829 as tool for micromanipulation of embryos. Zygote 25, 637–51.CrossRefGoogle ScholarPubMed
Dos Santos, MP, Yasui, GS, Xavier, PL, de Macedo Adamov, NS, do Nascimento, NF, Fujimoto, T, Senhorini, JA and Nakaghi, LS (2016). Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote 24, 795807.CrossRefGoogle Scholar
Fujimura, K and Okada, N (2007). Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system. Dev Growth Differ 49, 301–24.CrossRefGoogle ScholarPubMed
Gomes, RZ, Sato, Y, Rizzo, E and Bazzoli, N (2013). Early development of Brycon orthotaenia (Pisces: Characidae). Zygote 21, 1120.CrossRefGoogle Scholar
Green, BS and Fisher, R (2004). Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Bio Ecol 299, 115–32.CrossRefGoogle Scholar
Hall, TE, Smith, P and Johnston, IA (2004). Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259, 255–70.CrossRefGoogle ScholarPubMed
Kimmel, CB, Ballard, WW, Kimmel, SR, Ullmann, B and Schilling, TF (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253310.CrossRefGoogle ScholarPubMed
Korzelecka-Orkisz, A, Szalast, Z, Pawlos, D, Smaruj, I, Tañski, A, Szulc, J and Formicki, K (2012). Early ontogenesis of the angelfish, Pterophyllum scalare Schultze, 1823 (Cichlidae). Neotrop Ichthyol 10, 567–76.CrossRefGoogle Scholar
Koumoundouros, G, Divanach, P, Anezaki, L and Kentouri, M (2001). Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Mar Biol 139, 817–30.Google Scholar
Kupren, K, Prusińska, M, Żarski, D, Krejszeff, S and Kucharczyk, D (2014). Early development and allometric growth in Nannacara anomala Regan, 1905 (Perciformes: Cichlidae) under laboratory conditions. Neotrop Ichthyol 12, 659–65.CrossRefGoogle Scholar
Lima, AF de, Andrade, FF, Pini, SFR, Makrakis, S and Makrakis, MC (2017). Effects of delayed first feeding on growth of the silver catfish larvae Rhamdia voulezi (Siluriformes: Heptapteridae). Neotrop Ichthyol 15, e160027.CrossRefGoogle Scholar
Maria, AN, Ninhaus-Silveira, A, Orfão, LH and Viveiros, ATM (2017). Embryonic development and larval growth of Brycon nattereri Günther, 1864 (Characidae) and its implications for captive rearing. Zygote 25, 711–8.CrossRefGoogle ScholarPubMed
Marques, C, Nakaghi, LS, Faustino, F, Ganeco, LN and Senhorini, JA (2008). Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.CrossRefGoogle ScholarPubMed
Martell, DJ, Kieffer, JD and Trippel, EA (2005). Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Biol 66, 1558–75.CrossRefGoogle Scholar
Meijide, FJ and Guerrero, GA (2000). Embryonic and larval development of a substrate-brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J Zool 252, 481–93.CrossRefGoogle Scholar
Morrison, CM, Miyake, T and Wright, JR Jr (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces: Cichlidae). J Morphol 247, 172–95.3.0.CO;2-H>CrossRefGoogle Scholar
Ninhaus-Silveira, A, Foresti, F and de Azevedo, A (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.CrossRefGoogle Scholar
Ninhaus-Silveira, A, Foresti, F, de Azevedo, A, Agostinho, CA, and Veríssimo-Silveira, R (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae). Zygote 15, 267–71.CrossRefGoogle Scholar
Nur, FM, Batubara, AS, Eriani, K, Tang, UM, Muhammadar, AA, Siti-Azizah, MN, Wilkes, M, Fadli, N, Rizal, S and Muchlisin, ZA (2020). Effect of water temperature on the physiological responses in Betta Rubra, Perugia 1893 (Pisces: Osphronemidae). Int Aquat Res 12, 209–18.Google Scholar
Oka, S and Higashiji, T (2012). Early ontogeny of the big roughy Gephyroberyx japonicus (Beryciformes: Trachichthyidae) in captivity. Ichthyol Res 59, 282–5.CrossRefGoogle Scholar
Olaniyi, WA and Omitogun, OG (2014). Stages in the early and larval development of the African catfish Clarias gariepinus (Teleostei, Clariidae). Zygote 22, 314–30.CrossRefGoogle Scholar
Oliveira, RF and Almada, VC (1995). Sexual dimorphism and allometry of external morphology in Oreochromis mossambicus . J Fish Biol 46, 1055–64.Google Scholar
Pandit, NP and Nakamura, M (2010). Effect of high temperature on survival, growth and feed conversion ratio of Nile tilapia, Oreochromis niloticus . Our Nature 8, 219–24.CrossRefGoogle Scholar
Pankhurst, NW and Munday, PL (2011). Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res 62, 1015–26CrossRefGoogle Scholar
Pereira, SL, De Andrade, DR, Radael, MC, Fosse Filho, JC, De Azevedo, RV, Mattos, DDC and Vidal Junior, MV (2016). Effect of temperature during embryonic development and first feeding of Trichogaster leeri larvae. Zygote 24, 733–41.CrossRefGoogle ScholarPubMed
Perini, VDR, Sato, Y, Rizzo, E and Bazzoli, N (2010). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes). Zygote 18, 159–71.CrossRefGoogle Scholar
Perrotti, PB, Abdo, TF, Meireles, WA, Marcon, L and Bazzoli, N (2019). Ontogenesis and embryogenesis of Megaleporinus elongatus larvae (Characiformes: Anostomidae) from the Jequitinhonha River Basin. J Appl Ichthyol 35, 520–8.CrossRefGoogle Scholar
Prakoso, VA, Pouil, S, Prabowo, MNI, Sundari, S, Arifin, OZ, Subagja, J, Affandi, R, Kristanto, AH, Slembrouck, J (2019). Effects of temperature on the zootechnical performances and physiology of giant gourami (Osphronemus goramy) larvae. Aquaculture 150, 160–8.CrossRefGoogle Scholar
Rodrigues-Galdino, AM, Maiolino, CV, Forgati, M, Donatti, L, Mikos, JD, Carneiro, PC and Rios, FS (2010). Development of the neotropical catfish Rhamdia quelen (Siluriformes, Heptapteridae) incubated in different temperature regimes. Zygote 18, 131–44.CrossRefGoogle ScholarPubMed
Saemi-Komsari, M, Mousavi-Sabet, H, Kratochwil, CF, Sattari, M, Eagderi, S and Meyer, A (2018a). Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleus . J Fish Biol 92, 1888–901.CrossRefGoogle ScholarPubMed
Saemi-Komsari, M, Salehi, M, Mansouri-Chorehi, M, Eagderi, S and Mousavi-Sabet, H (2018b). Developmental morphology and growth patterns of laboratory-reared giraffe cichlid, Nimbochromis venustus Boulenger, 1908. Int J Aquat Biol 6, 170–8.Google Scholar
Santos, JA, Soares, CM and Bialetzki, A (2020). Early ontogeny of yellowtail tetra fish Astyanax lacustris (Characiformes: Characidae). Aquac Res 51, 4030–42.CrossRefGoogle Scholar
Sato, Y, Fenerich-Verani, N, Verani, JR, Vieira, LJS, Godinho, HP (2000). Induced reproductive responses of the neotropical anostomid fish Leporinus elongatus Val. under captive breeding. Aquac Res 31, 189–93.CrossRefGoogle Scholar
Satoh, S, Tanoue, H, Ruitton, S, Mohri, M and Komatsu, T (2017). Morphological and behavioral ontogeny in larval and early juvenile discus fish Symphysodon aequifasciatus . Ichthyol Res 64, 3744.CrossRefGoogle Scholar
Uji, S, Suzuki, T, Iwasaki, T, Teruya, K, Hirasawa, K, Shirakashi, M, Onoue, S, Yamashita, Y, Tsuji, M, Tsuchihashi, Y and Okuzawa, K (2015). Effect of temperature, hypoxia and disinfection with ozonated seawater during somitogenesis on muscular development of the trunk in larval seven-band grouper, Epinephelus septemfasciatus (Thunberg). Aquac Res 46, 2698–706.CrossRefGoogle Scholar
Vidal, LVO, Albinati, RCB, Albinati, AC, Lira, AD de, Almeida, TR de and Santos, GB (2008). Eugenol como anestésico para a tilápia-do-nilo. Pesqui Agropecuária Bras 43, 1069–74.CrossRefGoogle Scholar
Zaniboni Filho, E, Reynalte-Tataje, D and Weingartner, M (2006). Potencialidad del género Brycon en la piscicultura brasileña. Rev Colombi Cienc Pecu 19, 233–40.Google Scholar