Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T20:07:11.114Z Has data issue: false hasContentIssue false

The influence of sperm concentration, length of the gamete co-culture and the evolution of different sperm parameters on the in vitro fertilization of prepubertal goat oocytes

Published online by Cambridge University Press:  25 March 2010

M.J. Palomo*
Affiliation:
Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
T. Mogas
Affiliation:
Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
D. Izquierdo
Affiliation:
Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
M.T. Paramio
Affiliation:
Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
*
All correspondence to: M Jesús Palomo Peiró. Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. Tel: +34935811959. Fax: +34935812006. e-mail: [email protected]

Summary

The aims of the present study were: (1) to evaluate the influence of sperm concentration (ranging from 0.5 × 106 to 4 × 106 spermatozoa/ml) and length of the gamete co-incubation time (2, 4, 6, 8, 10, 12, 16, 20, 24 or 28 h) on in vitro fertilization (IVF), assessing the sperm penetration rate; (2) to investigate the kinetics of different semen parameters as motility, viability and acrosome status during the co-culture period; and (3) to analyse the effect of the presence of cumulus–oocytes complexes (COCs) on these parameters. To achieve these objectives, several experiments were carried out using in vitro matured oocytes from prepubertal goats. The main findings of this work are that: (1) in our conditions, the optimum sperm concentration is 4 × 106 sperm/ml, as this sperm:oocyte ratio (approximately 28,000) allowed us to obtain the highest penetration rate, without increasing polyspermy incidence; (2) the highest percentage of viable acrosome-reacted spermatozoa is observed between 8–12 h of gamete co-culture, while the penetration rate is maximum at 12 h of co-incubation; and (3) the presence of COCs seems to favour the acrosome reaction of free spermatozoa on IVF medium, but not significantly. In conclusion, we suggest that a gamete co-incubation for 12–14 h, with a concentration of 4 × 106 sperm/ml, would be sufficient to obtain the highest rate of penetration, reducing the exposure of oocytes to high levels of reactive oxygen species produced by spermatozoa, especially when a high sperm concentration is used to increase the caprine IVF outcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J.R. (1994). A free radical theory of male infertility. Reprod. Fertil. Dev. 6, 1924.CrossRefGoogle ScholarPubMed
Bormann, C.L., Ongeri, E.M. & Krisher, R.L. (2003). The effect of vitamins during maturation of caprine oocytes on subsequent developmental potential in vitro. Theriogenology 59, 1373–80.CrossRefGoogle ScholarPubMed
Cox, J.F., Hormazabal, J. & Santa María, A. (1993). Effect of the cumulus on in vitro fertilization of bovine matured oocytes. Theriogenology 40, 1259–67.CrossRefGoogle Scholar
Cox, J.F., Saravia, F., Briones, M. & Santa María, A. (1995). Dose-dependent effect of heparin on fertilizing ability of goat spermatozoa. Theriogenology 44, 451–60.CrossRefGoogle ScholarPubMed
Crozet, N. (1988). Fine structure of sheep fertilization in vitro. Gamete Res. 19, 291303.CrossRefGoogle ScholarPubMed
Crozet, N. (1991a). Manipulation of oocytes and in vitro fertilization. J. Reprod. Fert. Suppl. 43, 235–43.Google ScholarPubMed
Crozet, N. (1991b). La fecundation in vivo et in vitro. In La Reproduction chez les Mammifères et l'Homme (eds Thibault, C. & Levasseur, M.C.), pp. 315–37. Paris: INRA-Editions Marketing.Google Scholar
Chauhan, M.S. & Anand, S.R. (1991). In vitro maturation and fertilization of goat oocytes. Indian J. Exp. Biol. 29, 105–10.Google ScholarPubMed
Cheng, W.T.K. (1985). In Vitro Fertilization of Farm Animal Oocytes. pp. 133–54. PhD Thesis, University of Cambridge:Google Scholar
Chian, R.C., Nakahara, H., Niwa, K. & Funahashi, H. (1992). Fertilization and early cleavage in vitro of aging bovine oocytes after maturation in culture. Theriogenology 37, 666672.CrossRefGoogle ScholarPubMed
De Jonge, C.J., Rawlins, R.G. & Zaneveld, L.J.D. (1988). Induction of the human sperm acrosome by human oocytes. Fertil. Steril. 50, 949–53.CrossRefGoogle ScholarPubMed
De Smedt, V., Crozet, N., Ahmed-Ali, M., Martino, A. & Cognié, Y. (1992). In vitro maturation and fertilization of goat oocytes. Theriogenology 37, 1049–60.CrossRefGoogle ScholarPubMed
Didion, B.A., Dobrinsky, J.R., Giles, J.R. & Graves, C.N. (1989). Staining procedure to detect viability and the true acrosome reaction in spermatozoa of various species. Gamete Res. 22, 51–7.CrossRefGoogle ScholarPubMed
Dode, M.A.N., Rodovalho, N.C., Ueno, V.G. & Fernandes, C.E. (2002). The effect of sperm preparation and co-incubation time on in vitro fertilization of Bos indicus oocytes. Anim. Reprod. Sci. 69, 1523.CrossRefGoogle ScholarPubMed
First, N.L. & Parrish, J.J. (1987). In vitro fertilization of ruminants. J. Reprod. Fert. Suppl. 34, 151–65.Google ScholarPubMed
Fukui, Y. (1990). Effect of follicle cells on the acrosome reaction, fertilization, and developmental competence of bovine oocytes matured in vitro. Mol. Reprod. Dev. 26, 40–6.CrossRefGoogle ScholarPubMed
Gadea, J. (2005). Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 63, 431–44.CrossRefGoogle ScholarPubMed
Garde, J., García Artiga, C., Gutiérrez, A. & Vázquez, I. (1992). Triple tinción para valorar acrosomas normales y viabilidad espermática en semen ovino. Med. Vet. 9, 107–13.Google Scholar
Gasparrini, B., De Rosa, A., Attanasio, L., Boccia, L., Di Palo, R., Campanile, G. & Zicarelli, L. (2008). Influence of the duration of in vitro maturation and gamete co-incubation on the efficiency of in vitro embryo development in Italian Mediterranean buffalo (Bubalus bubalis). Anim. Reprod. Sci. 105, 354–64.CrossRefGoogle ScholarPubMed
Gianaroli, L., Magli, M.C., Ferraretti, A.P., Fiorentino, A., Tosti, E., Panzella, S. & Dale, B. (1996). Reducing the time of sperm–oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum. Reprod., 11, 166–71.CrossRefGoogle ScholarPubMed
Gil, M.A., Almiñana, C., Roca, J., Vázquez, J.M. & Martinez, E.A. (2008). Boar semen variability and its effects on IVF efficiency. Theriogenology 70, 1260–8.CrossRefGoogle ScholarPubMed
Herrick, J.R., Lane, M., Gardner, D.K., Behboodi, E., Memeli, E., Blash, S., Echelard, Y. & Krisher, R.L. (2006). Metabolism, protein content, and in vitro embryonic development of goat cumulus–oocyte complexes matured with physiological concentrations of glucose and l-lactate. Mol. Reprod. Dev. 73, 256–66.CrossRefGoogle ScholarPubMed
Hong, S.J., Chiu, P.C., Lee, K.F., Tse, J.M.Y., Ho, P.C. & Yeung, W.S.B. (2004). Establishment of a capillary-cumulus model to study the selection of sperm for fertilization by the cumulus oophorus. Hum. Reprod. 19, 1562–9.CrossRefGoogle Scholar
Hyttel, P., Xu, K.P. & Greve, T. (1988). Ultrastructural abnormalities of in vitro fertilization of in vitro matured bovine oocytes. Anat. Embryol. 178, 4752.CrossRefGoogle ScholarPubMed
Iwata, H., Shiono, H., Kon, Y., Matsubara, K., Kimura, K., Kuwayama, T. & Monji, Y. (2008). Effects of modification of in vitro fertilization techniques on the sex ratio of the resultant bovine embryos. Anim. Reprod. Sci. 105, 234–44.CrossRefGoogle ScholarPubMed
Jedrzejczak, P., Pawelczyk, L., Taszarek-Hauke, G., Kotwicka, M., Warchol, W. & Kurpisz, M. (2005). Predictive value of selected sperm parameters for classical in vitro procedure of oocyte fertilization. Andrologia 37, 7282.CrossRefGoogle ScholarPubMed
Jufen, Q., Zhiming, H., Yong, Z. & Jianchen, W. (1991). In vitro capacitation of ejaculated spermatozoa and in vitro fertilization in dairy goats. Theriogenology 35, 219.CrossRefGoogle Scholar
Katska-Ksiazkiewicz, L., Rynska, B., Gajda, B. & Smorag, Z. (2004). Effect of donor stimulation, frozen semen and heparin treatment on the efficiency of in vitro embryo production in goats. Theriogenology 62, 576–86.CrossRefGoogle ScholarPubMed
Keskintepe, L., Simplicio, A.A. & Brackett, B.G. (1998). Caprine blastocyst development after in vitro fertilization with spermatozoa frozen in different extenders. Theriogenology 49, 1265–74.CrossRefGoogle ScholarPubMed
Kochhar, H.S., Kochhar, K.P., Basrur, P.K. & King, W.A. (2003). Influence of the duration of gamete interaction on cleavage, growth rate and sex distribution of in vitro produced bovine embryos. Anim. Reprod. Sci. 77, 3349.CrossRefGoogle ScholarPubMed
Koeman, J., Keefer, C.L., Baldasarre, H. & Downey, B.R. (2003). Developmental competence of prepubertal and adult goat oocytes cultured in semi-defined media following laparoscopic recovery. Theriogenology 60, 879–89.CrossRefGoogle ScholarPubMed
Kusunoki, H., Yasui, T., Kato, S. & Kanda, S. (1984). Identification of acrosome-reacted goat spermatozoa by a simplified triple-stain technique. Jpn. J. Zootech. Sci. 55, 832–7.Google Scholar
Martino, A., Palomo, M.J., Mogas, T. & Paramio, M.T. (1994). Influence of the collection technique of prepubertal goat oocytes on in vitro maturation and fertilization. Theriogenology 42, 859–73.CrossRefGoogle ScholarPubMed
Morton, K.M., Catt, S.L., Hollinshead, F.K., Maxwell, W.M.C. & Evans, G. (2005) The effect of gamete co-incubation time during in vitro fertilization with frozen–thawed unsorted and sex-sorted ram spermatozoa on the development of in vitro matured adult and prepubertal ewe oocytes. Theriogenology 64, 363–77.CrossRefGoogle ScholarPubMed
Palomo, M.J., Izquierdo, D., Mogas, T. & Paramio, M.T. (1999). Effect of semen preparation on IVF of prepubertal goat oocytes. Theriogenology 51, 927–40.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.L. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L., Winer, M.A. & First, N.L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–80.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L. & First, N.L. (1989). Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol. Reprod. 41, 683–99.CrossRefGoogle ScholarPubMed
Pavlok, A., Torner, H., Motlik, J., Fulka, J., Kauffold, P. & Duschinski, U. (1988). Fertilization of bovine oocytes in vitro: effect of different sources of gametes on fertilization rates and frequency of fertilization anomalies. Anim. Reprod. Sci. 16, 207–13.CrossRefGoogle Scholar
Pavlok, A. (2000). D-Penicillamine and granulosa cells can effectively extend the fertile lifespan of bovine frozen–thawed spermatozoa in vitro: effect on fertilization and polyspermy. Theriogenology 53, 1135–46.CrossRefGoogle Scholar
Pawshe, C.H., Totey, S.M. & Jain, S.K. (1994). Methods of recovery of goat oocytes for in vitro maturation and fertilization. Theriogenology 42, 418–23.CrossRefGoogle Scholar
Plachot, M., Mandelbaum, J. & Junca, A.M. (1984). Acrosome reaction of human sperm used for in vitro fertilization. Fertil. Steril. 42, 418–23.CrossRefGoogle ScholarPubMed
Rath, D (1992). Experiments to improve in vitro fertilization techniques for in vivo matured porcine oocytes. Theriogenology 37, 885–6.CrossRefGoogle ScholarPubMed
Rehman, N., Collins, A.R., Suh, T.K. & Wright, R.W. (1994). Effect of sperm exposure time on in vitro fertilization and embryo development of bovine oocytes matured in vitro. Theriogenology 41, 1447–52.CrossRefGoogle ScholarPubMed
Rodríguez-Dorta, N., Cognié, Y., González, F., Poulin, N., Guignot, F., Touzé, J.L, Baril, G., Cabrera, F., Álamo, D., Batista, M., Gracia, A. & Mermillod, P. (2007). Effect of coculture with oviduct epithelial cells on viability alters transfer of vitrified in vitro produced goat embryos. Theriogenology 68, 908–13.CrossRefGoogle Scholar
Saeki, K., Kato, H., Hosoi, Y., Miyake, M., Utsumi, K. & Iritani, A. (1991). Early morphological events of in vitro fertilized bovine oocytes with frozen–thawed spermatozoa. Theriogenology 35, 1051–8.CrossRefGoogle ScholarPubMed
Sidhu, K.S. & Guraya, S.S. (1989). Cellular and molecular biology of capacitation and acrosome reaction in mammalian spermatozoa. Int. Rev. Cytol. 118, 231–80.CrossRefGoogle ScholarPubMed
Sumantri, C., Boediono, A., Ooe, M., Murakami, M., Saha, S. & Suzuki, T. (1997). The effect of sperm–oocyte incubation time on in vitro embryo development using sperm from a tetraparental chimeric bull. Anim. Reprod. Sci. 48, 187–95.CrossRefGoogle ScholarPubMed
Suzuki, K., Asano, A., Eriksson, B., Niwa, K., Nagai, T. & Rodriguez-Martinez, H. (2002). Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus–oocyte-complexes-conditioned medium and hyaluronan. Int. J. Androl. 25, 8493.CrossRefGoogle ScholarPubMed
Talbot, P. & Chacon, R. (1981). A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp. Zool. 215, 201–8.CrossRefGoogle ScholarPubMed
Tangue, S., Van Soom, A., Mehrzad, J., Maes, D., Duchateau, L. & de Kruif, A. (2003). Cumulus contributions during fertilization in Vitro. Theriogenology 60, 135–49.CrossRefGoogle Scholar
Ward, F., Enright, B., Rizos, D., Boland, M. & Lonergan, P. (2002). Optimization of in vitro embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57, 2105–17.CrossRefGoogle ScholarPubMed
Watson, P.F. (2000). The causes of the reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60–61, 481–92.CrossRefGoogle ScholarPubMed
Xu, K.P. & Greve, T. (1988). A detailed analysis of early events during in-vitro fertilization of bovine follicular oocytes. J. Reprod. Fert. 82, 127–34.CrossRefGoogle ScholarPubMed
Yanagimachi, R. (1988). Mammalian fertilization. In The Physiology of Reproduction, 1st edn, (eds Knobil, E. & Neill, J.D.), pp. 135–85. New York: Raven Press.Google Scholar
Yanagimachi, R. (1994). Mammalian fertilization. In The Physiology of Reproduction, 2nd edn, (eds Knobil, E. & Neill, J.D.), pp. 189317. New York: Raven Press.Google Scholar
Younis, A.I. & Brackett, B.G. (1991). Importance of cumulus cells and insemination interval for development of bovine oocytes into morulae and blastocysts in vitro. Theriogenology 36, 1121.CrossRefGoogle ScholarPubMed
Younis, A.I., Zuelke, K.A., Harper, K.M., Oliveira, M.A.L. & Brackett, B.G. (1991). In vitro fertilization of goat oocytes. Biol. Reprod. 44, 1177–82.CrossRefGoogle ScholarPubMed