Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T00:32:53.309Z Has data issue: false hasContentIssue false

Influence of single nucleotide polymorphism in the IGF-1 gene on performance and conformation traits in Munjal sheep

Published online by Cambridge University Press:  17 November 2022

Sandeep Kumar
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India
S.P. Dahiya*
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India
Ankit Magotra
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India
Poonam Ratwan
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India
Yogesh Bangar
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India
*
Author for correspondence: S.P. Dahiya. Influence of single nucleotide polymorphism in the IGF-1 gene on performance and conformation traits in Munjal sheep. E-mail: [email protected]

Summary

Genetic polymorphism research in livestock species aims to assess genetic differences within and among breeds, primarily for conservation and development objectives. The aim of the present study was to determine the point mutation in the IGF-1 gene (g.855G>C and g.857G>A) and its association with performance traits in Munjal sheep. In total, 50 Munjal sheep were selected and the genomic DNA was isolated using the Automated Maxell RSC DNA/RNA purification system and the Maxwell RSC whole blood DNA kit. A reported set of primers was used to amplify the 294-bp fragment encompassing the targeted region, i.e. the 5′ flanking region of the IGF-1 gene. The polymerase chain reaction product of 294-bp size harbouring the g.857G>A mutation in the 5′ flanking region of the IGF-1 gene was digested with HaeII enzyme. Three possible genotypes were defined by distinct banding patterns, i.e. GG (194, 100 bp), GA (294, 194, 100 bp) and AA (294 bp) in the studied population of Munjal sheep. The genotypic and allelic frequencies of g.857G>A single nucleotide polymorphism of the IGF-1 gene indicated that the frequency of the A allele was higher in the studied population, i.e. 0.59 and the GA genotype was found to be the predominant genotype (0.66). Allele A of the IGF-1 gene was found to be associated with higher body weights and can be used in selection criteria for improving the performance of Munjal sheep. The positive effect of the IGF-1 gene on several conformational traits as observed in this study suggests that this area of the ovine IGF-I gene is particularly important and warrants further investigation on a larger population size.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Joint first authors.

References

20th Livestock Census. (2019). All India report. Department of Animal Husbandry, Dairying and Fisheries, MoA. GOI.Google Scholar
Al Qasimi, R. H., Hassan, A. F. and Khudair, B. Y. (2019) Effect of IGF-1 and GH genes polymorphism on weights and body measurements of Awassi lambs in different ages. Basrah Journal of Agricultural Sciences, 32(1), 3946. doi: 10.37077/25200860.2019.125 CrossRefGoogle Scholar
Arora, D. N., Singh, B., Kalra, S. and Balaine, D. S. (1986). Studies on growth and body weights in different breeds. Livestock Adviser, 11, 2931.Google Scholar
Casas-Carrillo, E., Prill-Adams, A., Price, S. G., Clutter, A. C. and Kirkpatrick, B. W. (1997). Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Animal Genetics, 28(2), 8893. doi: 10.1111/j.1365-2052.1997.00086.x CrossRefGoogle ScholarPubMed
Chauhan, A., Dahiya, S. P., Bangar, Y. C. and Magotra, A. (2021). The estimation of (co)variance components and genetic parameters for growth and wool traits in Harnali sheep. Small Ruminant Research, 203, 106485. doi: 10.1016/j.smallrumres.2021.106485 CrossRefGoogle Scholar
Chauhan, A., Dahiya, S. P., Magotra, A. and Bangar, Y. C. (2022). Evaluating animal models comprising direct and maternal effects associated with growth rates and the Kleiber ratio in Harnali sheep. Zygote, 30(2), 244248. doi: 10.1017/S0967199421000605 CrossRefGoogle ScholarPubMed
Chelongar, R., Hajihosseinlo, A. and Ajdary, M. (2014). The effect of IGF-1 and PIT-1 genes polymorphisms on fat-tail measurements (fat-tail dimensions) in Makooei sheep. Advances in Environmental Biology, 8, 862867.Google Scholar
Curi, R. A., de Oliveira, H. N., Silveira, A. C. and Lopes, C. R. (2005). Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livestock Production Science, 94(3), 159167. doi: 10.1016/j.livprodsci.2004.10.009 CrossRefGoogle Scholar
Dahiya, S. P., Malik, Z. S. and Pander, B. L. (2018). Multivariate study of body conformation in Munjal sheep. Indian Journal of Veterinary Research, 27(2), 2832. doi: 10.5958/0974-0171.2018.00012.2 CrossRefGoogle Scholar
Darwish, H. R., El-Shorbagy, H. M., Abou-Eisha, A. M., El-Din, A. E. and Farag, I. M. (2017). New polymorphism in the 5′ flanking region of IGF-1 gene and its association with wool traits in Egyptian Barki sheep. Journal, Genetic Engineering and Biotechnology, 15(2), 437441. doi: 10.1016/j.jgeb.2017.08.001 CrossRefGoogle ScholarPubMed
Das, A. K., Chakraborty, D., Kumar, N., Gupta, P., Khan, N. N. and Bukhari, S. (2014). Effects of non-genetic factors on performance traits of Kashmir Merino sheep. Indian Journal of Animal Research, 48(2), 106108. doi: 10.5958/j.0976-0555.48.2.024 CrossRefGoogle Scholar
Devendran, P., Cauveri, D., Murali, N. and Kumarasamy, P. (2014). Growth profile of Madras Red sheep in farmer’s flock. Indian Journal of Small Ruminants, 20(1), 2023.Google Scholar
El-Hanafy, A. A. and Salem, H. H. (2009). PCR-RFLP of IGFBP-3 gene in some Egyptian sheep breeds. American–Eurasian Journal of Agricultural and Environment Science, 5(1), 8285.Google Scholar
Franco, L., Williams, F. M., Trofimov, S., Malkin, I., Surdulescu, G., Spector, T. and Livshits, G. (2014). Assessment of age-related changes in heritability and IGF-1 gene effect on circulating IGF-1 levels. Age, 36(3), 9622. doi: 10.1007/s11357-014-9622-7 CrossRefGoogle ScholarPubMed
Gao, X., Shi, M., Xu, X., Li, J., Ren, H. and Xu, S. (2009). Sequence variations in the bovine IGF-I and IGFBP3 genes and their association with growth and development traits in Chinese Beef Cattle. Agricultural Sciences in China, 8(6), 717722. doi: 10.1016/S1671-2927(08)60270-9 CrossRefGoogle Scholar
Gholibeikifard, A., Aminafshar, M. and Mashhadi, M. H. (2013). Polymorphism of IGF-I and ADRB3 genes and their association with growth traits in the Iranian Baluchi sheep. Journal of Agricultural Science and Technology, 15, 11531162.Google Scholar
Gluckman, P. D., Douglas, R. G., Ambler, G. R., Breier, B. H., Hodgkinson, S. C., Koea, J. B. and Shaw, J. H. F. (1991). The endocrine role of insulin-like growth factor I. Acta Paediatrica Scandinavica. Supplement, 372(372), 97105; discussion 106. doi: 10.1111/j.1651-2227.1991.tb17981.x CrossRefGoogle ScholarPubMed
Grochowska, E., Borys, B., Janiszewski, P., Knapik, J. and Mroczkowski, S. (2017). Effect of the IGF-I gene polymorphism on growth, body size, carcass and meat quality traits in Coloured Polish Merino sheep. Archiv für Tierzucht, 60, 161.CrossRefGoogle Scholar
Hajihosseinlo, A., Hashemi, A., Razavi-Sheshdeh, S. and Pirany, N. (2013). Association of the polymorphism in the 5¢ flanking region of the ovine IGF-I gene with growth and development traits in Makui sheep of Iran. European Journal of Zoological Research, 2, 1924.Google Scholar
Harvey, W. R. (1990). User’s guide for LSMLMW mixed model least square and maximum likelihood computer program (PC-2 version) p. 91. Ohio State University Press.Google Scholar
He, J. N., Zhang, B. Y., Chu, M. X., Wang, P. Q., Feng, T., Cao, G. L., Di, R., Fang, L., Huang, D. W., Tang, Q. Q. and Li, N. (2012). Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Molecular Biology Reports, 39(10), 98019807. doi: 10.1007/s11033-012-1846-y CrossRefGoogle ScholarPubMed
Honarvar, M., Sadeghi, M., Moradi-Shahrebabak, H., Behzadi, S., Mohammadi, H. and Lavaf, A. (2012). Study of polymorphisms in the 5′flanking region of the ovine IGF-I gene in Zel sheep. World Applied Sciences Journal, 16, 726728.Google Scholar
Islam, K. K., Vinsky, M., Crews, R. E., Okine, E., Moore, S. S., Crews, D. H. and Li, C. (2009). Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle. Animal Genetics, 40(5), 766769. doi: 10.1111/j.1365-2052.2009.01912.x CrossRefGoogle ScholarPubMed
Kannojia, K., Yadav, S. B. S., Narula, H. K., Pannu, U. and Singh, H. (2016). Genetic parameters of body weights in Marwari sheep. Indian Journal of Small Ruminants, 22(2), 222224. doi: 10.5958/0973-9718.2016.00034.9 CrossRefGoogle Scholar
Kaplan, S. and Atalay, S. (2018). Single nucleotide polymorphism of ovine leptin and insulin-like growth factor 1 gene in Kivircik crossbred ewes. Pakistan Journal of Zoology, 50(3), 851856. doi: 10.17582/journal.pjz/2018.50.3.851.856 CrossRefGoogle Scholar
Kazemi, S. M., Amirinia, C., Emrani, H. and Gharahveysi, S. (2011). Study and identification of insulin-like growth factor-I gene polymorphisms in Zel sheep population. American Journal of Animal and Veterinary Sciences, 6(4), 176179. doi: 10.3844/ajavsp.2011.176.179 Google Scholar
Kumar, S., Dahiya, S. P., Magotra, A., Bangar, Y. C. and Garg, A. R. (2022a). Identification of point mutation in exon 3 of leptin gene in Munjal sheep. Indian Journal of Animal Research, 56(7), 807810. doi: 10.18805/IJAR.B-3981 Google Scholar
Kumar, S., Dahiya, S. P., Magotra, A., Ratwan, P. and Bangar, Y. C. (2022b). Estimation of heritability and breeding values for performance and body conformation traits in Harnali Sheep. Indian Journal of Animal Sciences, 92(2), 226231. doi: 10.56093/ijans.v92i2.122098 CrossRefGoogle Scholar
Kumar, S., Dahiya, S. P., Malik, Z. S., Patil, C. S. and Magotra, A. (2018). Genetic analysis of performance traits in Harnali sheep. Indian Journal of Animal Research, 52, 643648. doi: 10.18805/ijar.v0iOF.7827 Google Scholar
Lalit, Malik, Z. S., Dalal, D. S., Dahiya, S. P., Patil, C. S. and Dahiya, R. (2016). Genetic analysis of growth traits in Harnali sheep. Veterinary World, 9(2), 128132. doi: 10.14202/vetworld.2016.128-132 CrossRefGoogle ScholarPubMed
Laron, Z. (2001). Insulin-like growth factor 1 (IGF-1): A growth hormone. Molecular Pathology, 54(5), 311316. doi: 10.1136/mp.54.5.311 CrossRefGoogle ScholarPubMed
Machado, M. B. B., Alencar, M. M., Pereira, A. P., Oliveira, H. N., Casas, E., Coutinho, L. L. and Regitano, L. C. A. (2003). QTL affecting body weight in a candidate region of cattle chromosome 5. Genetics and Molecular Biology, 26(3), 259265. doi: 10.1590/S1415-47572003000300008 CrossRefGoogle Scholar
Mason, I. L. (1988). A World Dictionary of Livestock Breeds, Types and Varieties. CAB International: Wallingford, UK.Google Scholar
Moradian, C., Esmailnia, G. and Hajihosseinlo, A. (2013). Polymorphism of IGF-1 gene in Makoei sheep using PCR-SSCP. European Journal of Experimental Biology, 3(2), 490494.Google Scholar
Mullen, M. P., Berry, D. P., Howard, D. J., Diskin, M. G., Lynch, C. O., Giblin, L., Kenny, D. A., Magee, D. A., Meade, K. G. and Waters, S. M. (2011). Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are associated with performance in Holstein-Friesian dairy cattle. Frontiers in Genetics, 2, 3. doi: 10.3389/fgene.2011.00003 CrossRefGoogle ScholarPubMed
Naicy, T., Venkatachalapathy, T., Aravindakshan, T., Raghavan, K. C., Mini, M. and Shyama, K. (2017). Association of a novel single nucleotide polymorphism at the exon-2 of insulin-like growth factor 1 (IGF1) gene with phenotypic variants in goats. Veterinarski Arhiv, 87(4), 457472. doi: 10.24099/vet.arhiv.160229a CrossRefGoogle Scholar
Narula, H. K., Patel, A. K., Chopra, A. and Mehrotra, V. (2017). Influence of environmental factors on production traits and heritability estimates of Magra sheep in arid region. Indian Journal of Small Ruminants, 23(1), 2125. doi: 10.5958/0973-9718.2017.00032.0 CrossRefGoogle Scholar
Nazari, F., Noshary, A. and Hemati, B. (2016). Association between insulin–like growth factor I polymorphism and early growth traits in Iranian Zandi sheep, found polymerase chain reaction restriction fragment length polymorphism (PCRRFLP). Iranian Journal of Applied Animal Science, 6, 665669.Google Scholar
Negahdary, M., Hajihosseinlo, A. and Ajdary, M. (2013). PCR-SSCP variation of IGF1 and PIT1 genes and their association with estimated breeding values of growth traits in Makooei Sheep. Genetics Research International, 2013, 272346. doi: 10.1155/2013/272346 CrossRefGoogle ScholarPubMed
Nirban, L. K., Joshi, R. K., Narula, H. K., Singh, H. and Bhakar, S. (2015). Genetic and non-genetic factors affecting body weights in Marwari sheep. Indian Journal of Small Ruminants, 21(1), 106108. doi: 10.5958/0973-9718.2015.00029.X CrossRefGoogle Scholar
Niznikowski, R., Czub, G., Kaminski, J., Nieradko, M., Swiatek, M., Glowacz, K. and Slezak, M. (2014). Polymorphism of insulin-like growth factor (IGF-1) gene in Polish Lowland sheep from Podlaskievoivodship. Animal Science. Annals of Warsaw University of Life Sciences-SGGW, 54(5), 311316.Google Scholar
Proskura, W. S. and Szewczuk, M. (2014). The polymorphism in the IGF1R gene is associated with body weight and average daily weight gain in Pomeranian Coarse wool ewes. Pakistan Veterinary Journal, 34, 514517.Google Scholar
Ramasamy, C. (2018). Association of IGF1 gene polymorphism with growth rates in Madras Red sheep. International Journal of Livestock Research, 8(5), 19642277. doi: 10.5455/ijlr.20170915054251 CrossRefGoogle Scholar
Rasouli, S., Abdolmohammadi, A., Zebarjadi, A. and Mostafaei, A. (2017). Evaluation of polymorphism in IGF-I and IGFB-3 genes and their relationship with twinning rate and growth traits in Markhoz goats. Annals of Animal Science, 17(1), 89103. doi: 10.1515/aoas-2016-0020 CrossRefGoogle Scholar
Reddy, V. V., Sreenivas, D., Gnanaprakash, M. and Harikrishna, C. H. (2017). Genetic analysis of growth performance of Nellore brown sheep. Indian J. Sci. Environ. Technol., 6, 774778.Google Scholar
Reyna, X. F., Montoya, H. M., Castrellón, V. V., Rincón, A. M. S., Bracamonte, M. P. and Vera, W. A. (2010). Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genetics and Molecular Research, 9(2), 875883. doi: 10.4238/vol9-2gmr745 CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. R. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (2nd ed.). Cold Spring Harbor Laboratory Press.: Cold Spring Harbor, NY.Google Scholar
Sankhyan, V., Thakur, Y. P. and Dogra, P. K. (2019). Genetic polymorphism in IGF-1 gene in four sheep and goat breeds and its association with biometrical traits in migratory Gaddi goat breed of western Himalayan state of Himachal Pradesh, India. Indian Journal of Animal Research, 54, 508512. doi: 10.18805/ijar.B-3795 Google Scholar
Scatà, M. C., Catillo, G., Annicchiarico, G., De Matteis, G., Napolitano, F., Signorelli, F. and Moioli, B. (2010). Investigation on lactation persistency and IGF-I gene polymorphisms in dairy sheep. Small Ruminant Research, 89(1), 711. doi: 10.1016/j.smallrumres.2009.10.014 CrossRefGoogle Scholar
Siadkowska, E., Zwierzchowski, L., Oprządek, J., Strzałkowska, N., Bagnicka, E. and Krzyżewski, J. (2006). Effect of polymorphism in IGF-1 gene on production traits in Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 24(3), 225237.Google Scholar
Singh, H., Pannu, U., Narula, H. K., Chopra, A. and Murdia, C. K. (2013). Influence of genetic and nongenetic factors on preweaning growth in Marwari sheep. Indian Journal of Small Ruminants, 19(2), 142145.Google Scholar
Sun, W., Su, R., Li, D., Musa, H. H., Kong, Y., Ding, J. T., Ma, Y. H., Chen, L., Zhang, Y. F. and Wu, W. Z. (2014). Developmental changes in IGF-I and MyoG gene expression and their association with meat traits in sheep. Genetics and Molecular Research, 13(2), 27722783. doi: 10.4238/2014.April.14.6 CrossRefGoogle ScholarPubMed
Tahmoorespur, M., Valeh, M. V., Nassiry, M. R., Moussavi, A. H. and Ansary, M. (2009). Association of the polymorphism in the 5′flanking region of the ovine IGF-I gene with growth traits in the Baluchi sheep. South African Journal of Animal Science, 39(1), 97101. doi: 10.4314/sajas.v39i1.61319 Google Scholar
Trukhachev, V., Skripkin, V., Kvochko, A., Kulichenko, A., Kovalev, D., Pisarenko, S., Volynkina, A., Selionova, M., Aybazov, M. and Shumaenko, S. (2016). Polymorphisms of the IGF1 gene in Russian sheep breeds and their influence on some meat production parameters. Slovenian Veterinary Research, 53, 7783.Google Scholar
Vivekanand, R. K., Narula, H. K., Singh, H. and Chopra, A. (2014). Effect of genetic and nongenetic factor on growth of Magra sheep in arid region of Rajasthan. Indian Journal of Small Ruminants, 20(2), 1922.Google Scholar
Yilmaz, A., Davis, M. E., Ch, Hines, H. and Chung, H. (2005). Detection of two nucleotide substitutions and putative promoters in the 5′ flanking region of the ovine IGF-I gene. Journal of Applied Genetics, 46(3), 307309.Google ScholarPubMed
Zhang, C., Zhang, W., Luo, H., Yue, W., Gao, M. and Jia, Z. (2008). A new single nucleotide polymorphism in the IGF-I gene and its association with growth traits in the Nanjiang Huang goat. Asian-Australasian Journal of Animal Sciences, 21(8), 10731079. doi: 10.5713/ajas.2008.70673 CrossRefGoogle Scholar