Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T07:54:00.501Z Has data issue: false hasContentIssue false

Influence of human embryo cultivation in a classic CO2 incubator with 20% oxygen versus benchtop incubator with 5% oxygen on live births: the randomized prospective trial

Published online by Cambridge University Press:  10 May 2019

Nina Gelo*
Affiliation:
University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia
Gabriela Kirinec
Affiliation:
University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia
Dinka Pavičić Baldani
Affiliation:
University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia The University of Zagreb, School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
Hrvoje Vrčić
Affiliation:
University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia The University of Zagreb, School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
Davor Ježek
Affiliation:
University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia The University of Zagreb, School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
Milan Milošević
Affiliation:
The University of Zagreb, School of Medicine, Šalata 3, 10 000 Zagreb, Croatia Andrija Štampar, School of Public Health, Rockefellerova 4, 10 000 Zagreb, Croatia
Patrik Stanić
Affiliation:
Polyclinic Repromed, Gradiščanska 36, 10 000 Zagreb, Croatia
*
*Address for correspondence: Nina Gelo. University Hospital Centre Zagreb, Department of Obstetrics and Gynecology, Petrova 13, 10 000 Zagreb, Croatia. Tel: +385 91 252 1235. Fax: +385 1 23 7 62 67. E-mail address: [email protected]

Summary

Our objective was to assess the effect of benchtop incubators with low oxygen concentrations on the clinical and embryological parameters of our patients. We conducted a prospective, randomized, opened controlled trial on infertile patients in stimulated cycles. In total, 738 infertile patients were assessed for eligibility and, after final exclusions, 230 patients were allocated either to a 5% O2 group (benchtop incubator) or a 20% O2 group (classic incubator). Finally, 198 patients in the 5% O2 group and 195 in the 20% O2 group were analysed. The outcomes measured were fertilization rate, clinical pregnancy rate, and live birth rate. The primary outcome – live birth rate per all transfers – did not show any improvement in the 5% oxygen group over the 20% oxygen group (25.3% versus 22.6%, P=0.531), but the number of day 5 blastocysts was significantly higher (P=0.009). Fertilization rate did not show any beneficial effect of reduced oxygen (5%) (73.4%±22.4% versus 74.6%±24.0%, P=0.606) per all transfers but there was statistically significant difference in the day 5 SET subgroup (85.3±15.1 versus 75.1±17.5; P=0.004). Clinical pregnancy rate showed results in favour of the 5% oxygen group for all subgroups (day 3: 23.7% versus 21.1%, P=0.701; day 5 SET: 35.0% versus 30.6%. P=0.569) but showed statistical significance only in the day 5 SET subgroup (51.1% versus 29.8%; P=0.038). Culturing of embryos in benchtop incubators under low oxygen produced more blastocysts and therefore was a better alternative for embryo selection, which resulted in higher pregnancy rates. To achieve higher live birth rates, embryo quality is not the only factor.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bontekoe, S, Mantikou, E, van Wely, M, Seshadri, S, Repping, S and Mastenbroek, S (2012) Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev CD008950.Google Scholar
Christiansen, OB, Nielsen, HS and Kolte, AM (2006) Future directions of failed implantation and recurrent miscarriage research. Reprod Biomed Online 13, 7183.Google Scholar
de los Santos, MJ, Gamiz, P, Albert, C, Galan, A, Viloria, T, Perez, S, Romero, JL and Remohi, J (2013) Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril 100, 402407.Google Scholar
Fischer, B and Bavister, BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99, 673679.Google Scholar
Fujitani, Y, Kasai, K, Ohtani, S, Nishimura, K, Yamada, M and Utsumi, K (1997) Effect of oxygen concentration and free radicals on in vitro development of in vitro-produced bovine embryos. J Anim Sci 75, 483489.Google Scholar
Gardner, DK (2016) The effect of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF. Reprod Biomed Online 32, 137141.Google Scholar
Glujovsky, D, Farquhar, C, Quinteiro Retamar, AM, Alvarez Sedo, CR and Blake, D (2016) Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev CD002118. Google Scholar
Gomes Sobrinho, DB, Oliveira, JB, Petersen, CG, Mauri, AL, Silva, LF, Massaro, FC, Baruffi, RL, Cavagna, M and Franco, JG Jr (2011) IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol 9, 143.Google Scholar
Harvey, AJ, Kind, KL, Pantaleon, M, Armstrong, DT and Thompson, JG (2004) Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 71, 11081119.Google Scholar
Iwata, H, Minami, N and Imai, H (2000) Postnatal weight of calves derived from in vitro matured and in vitro fertilized embryos developed under various oxygen concentrations. Reprod Fertil Dev 12, 391396.Google Scholar
Kovacic, B, Sajko, MC and Vlaisavljevic, V (2010) A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril 94, 511519.Google Scholar
Kovacic, B and Vlaisavljevic, V (2008) Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online 17, 229236.Google Scholar
Kwon, HC, Yang, HW, Hwang, KJ, Yoo, JH, Kim, MS, Lee, CH, Ryu, HS and Oh, KS (1999) Effects of low oxygen condition on the generation of reactive oxygen species and the development in mouse embryos cultured in vitro . J Obstet Gynaecol Res 25, 359366.Google Scholar
Meintjes, M, Chantilis, SJ, Douglas, JD, Rodriguez, AJ, Guerami, AR, Bookout, DM, Barnett, BD and Madden, JD (2009) A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod 24, 300307.Google Scholar
Nastri, CO, Nobrega, BN, Teixeira, DM, Amorim, J, Diniz, LMM, Barbosa, MWP, Giorgi, VSI, Pileggi, VN and Martins, WP (2016) Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: a systematic review and meta-analysis. Fertil Steril 106, 95104, e117.Google Scholar
Schulz, KF, Altman, DG, Moher, D and CONSORT Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340, c332.Google Scholar
Swain, JE (2014) Decisions for the IVF laboratory: comparative analysis of embryo culture incubators. RBMO 28, 535547 Google Scholar
Waldenstrom, U, Engstrom, AB, Hellberg, D and Nilsson, S (2009) Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril 91, 24612465.Google Scholar
Wale, PL and Gardner, DK (2016) The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 22, 222.Google Scholar
Zhang, JQ, Li, XL, Peng, Y, Guo, X, Heng, BC and Tong, GQ (2010) Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online 20, 510515.Google Scholar