Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T13:13:28.615Z Has data issue: false hasContentIssue false

Increase in DNA fragmentation and apoptosis-related gene expression in frozen-thawed bovine blastocysts

Published online by Cambridge University Press:  01 May 2006

Sae Young Park
Affiliation:
Maria Infertility Hospital Medical Institute/Maria Biotech, Seoul 130-812, Korea.
Eun Young Kim
Affiliation:
Maria Infertility Hospital Medical Institute/Maria Biotech, Seoul 130-812, Korea.
Xiang Shun Cui
Affiliation:
Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk, Korea.
Jin Cheol Tae
Affiliation:
Maria Infertility Hospital Medical Institute/Maria Biotech, Seoul 130-812, Korea.
Won Don Lee
Affiliation:
Maria Infertility Hospital, Seoul 130-812, Korea.
Nam Hyung Kim
Affiliation:
Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk, Korea.
Se Pill Park*
Affiliation:
Maria Infertility Hospital Medical Institute/Maria Biotech, Seoul 130-812, Korea.
Jin Ho Lim
Affiliation:
Maria Infertility Hospital, Seoul 130-812, Korea.
*
All correspondence to: Se Pill Park, PhD, Department of Animal Sciences, Maria Infertility Hospital Medical Institute/Maria Biotech, Sinseol-Dong, Dongdeamun-Gu, Seoul 130-812. e-mail: [email protected]

Summary

Evaluation of apoptosis and expression level of apoptosis-related genes is useful for examining the variation in embryo quality according to environmental change. The objective of this study was to investigate DNA fragmentation and apoptosis-related gene expression patterns in frozen-thawed bovine blastocysts. In vitro produced day 7 blastocysts were frozen by two different vitrification methods (conventional 0.25 ml straw or MVC straw). After thawing, DNA fragmentation of surviving embryos was examined by TUNEL assay, and the expression patterns of their apoptotic genes (survivin, Fas, Hsp 70 and caspase-3) were evaluated using real-time quantitative reverse transcriptase polymerase chain reaction. In vitro survival rates of frozen-thawed embryos were higher following the MVC vitrification method (88.2% re-expanded at 24 h, 77.1% hatching at 48 h) than the conventional (C) vitrification method (77.0% re-expanded at 24 h, 66.7% hatching at 48 h). However, both vitrified methods resulted in a significantly higher apoptotic index (C vitrification method 11.9%, MVC vitrification method 11.0%) than in non-frozen embryos (3.0%). Expression levels of survivin, Fas, caspase-3, and Hsp 70 were also increased in the frozen-thawed embryos compared with non-frozen embryos. These results indicate that the cryopreservation procedure might cause damage that results in an increase in DNA fragmentation and apoptosis-related gene transcription, reducing developmental capacity of frozen-thawed embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agca, Y., Monson, R.L., Northey, D.L., Peschel, D.E., Schaefer, D.M. & Rutledge, J.J. (1998). Normal calves from transfer of biopsied, sexed and vitrified IVP bovine embryos. Theriogenology 50, 129–45.CrossRefGoogle ScholarPubMed
Ambrosini, G., Adida, C. & Altieri, D.C. (1997). A novel anti-apoptotic gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–21.CrossRefGoogle Scholar
Anon. (1992). SAS User's Guide. Cary, NC: Statistical Analysis System Institute.Google Scholar
Asanuma, K., Tsuji, N., Endoh, Y., Yagihashi, A. & Watanabe, A. (2004). Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J. Immunol. 14, 3922–9.CrossRefGoogle Scholar
Baguisi, A., Lonergan, P., Overstrom, E. & Boland, M. (2000). Vitrification of bovine embryos: incidence of necrosis and apoptosis. Theriogenology 55, 162.Google Scholar
Betts, D.H. & King, W.A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–91.CrossRefGoogle ScholarPubMed
Bnaks, D.P., Plescia, J., Altieri, D.C., Chen, J., Rosenberg, S.H., Zhang, H. & Ng, S.C. (2000). Survivin does not inhibit caspase-3 activity. Blood 96, 40024003.CrossRefGoogle Scholar
Byrne, A.T., Southgate, J., Brison, D.R. & Leese, H.J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.CrossRefGoogle ScholarPubMed
Cohen, G.M. (1997). Caspases: the executioners of apoptosis. Biochem. J. 326, 116.CrossRefGoogle ScholarPubMed
Conway, E.M., Pollefeyt, S., Cornelissen, J., DeBaere, I., Steiner-Mosonyi, M., Ong, K., Baens, M., Collen, D. & Schuh, A.C. (2000). Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood 15, 14351442.CrossRefGoogle Scholar
Cryns, V. & Yuan, Y. (1999). Proteases to die for. Genes Dev. 12, 1551–70.CrossRefGoogle Scholar
Gjørret, J.O., Knijn, H.M., Dieleman, S.J., Avery, B., Larsson, L.I. & Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol. Reprod. 69, 1193–200.CrossRefGoogle ScholarPubMed
Gutierrez-Adan, A., Rizos, D., Fair, T., Moreira, P., Pintado, N., Dela, J., De La Fuente, J., Boland, M.P. & Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–8.CrossRefGoogle ScholarPubMed
Hamawaki, A., Kuwayama, M. & Hamamno, S. (1999). Minimum volume cooling method for bovine blastocyst vitrification (abstract). Theriogenology 51, 165.CrossRefGoogle Scholar
Hongsheng, M., Monson, R.L., Parrish, J.J. & Rutledge, J.J. (2003). Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 47, 7981.Google Scholar
Jurisicova, A., Latham, K.E., Casper, R.F., Casper, R.F. & Varmuza, S.L. (1998). Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51, 243–53.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Kawamura, K., Fukuda, J., Kodama, H., Kumagai, J., Kumagai, A. & Tanaka, T. (2001). Expression of Fas and Fas ligand mRNA in rat and human preimplantation embryos. Mol. Hum. Reprod. 5, 431–6.CrossRefGoogle Scholar
Kelkar, R.L., Dharma, S.J. & Nandedkar, T.D. (2003). Expression of Fas and Fas ligand protein and mRNA in mouse oocytes and embryos. Reproduction 126, 791–9.CrossRefGoogle ScholarPubMed
Kim, E.Y., Kim, D.I., Park, N.H., Lee, M.G., Weon, Y.S., Nam, H.K., Lee, K.S., Park, S.Y., Park, E.M., Yoon, J.Y., Heo, Y.T., Cho, H.J., Park, S P., Chung, K.S. & Lim, J.H. (2001). Establishment of bovine ovum bank. I. Full term development of vitrified in vitro matured Hanwoo (Korean cattle) oocytes by minimum volume cooling (MVC) method. Korean J. Anim. Reprod. 23, 293301.Google Scholar
Kim, E.Y., Park, S.Y., Yoon, J.Y., Ghil, G.S., Lee, C.H., Lee, G.S., Tae, J.C., Kim, N.H., Lee, W.D., Chung, K.S., Park, S.P. & Lim, J.H. (2004). A new efficient cryopreservation of human embryonic stem cells by a minimum volume cooling method. Korean J. Fertil. Steril. 31, 4150.Google Scholar
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–8.CrossRefGoogle ScholarPubMed
Kasai, M. & Mukaida, T. (2004). Cryopreservation of animal and human embryos by vitrification. Reprod. Biol. Med. Online 9, 164–70.CrossRefGoogle ScholarPubMed
Makarevich, A.V. & Markkula, M. (2002). Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture. Biol. Reprod. 66, 386–92.CrossRefGoogle ScholarPubMed
Matwee, C., Betts, D.H. & King, W.A. (2000). Apoptosis in the early bovine embryo. Zygote 8, 5768.CrossRefGoogle ScholarPubMed
Metcalfe, A.D., Hunter, H.R., Bloor, D.J., Lieberman, B.A., Picton, H.M., Leese, H.J., Kimber, S.J., Brison, D.R., Ashkenazi, A. & Dixit, V.M. (1999). Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–60.Google Scholar
Overstrom, E.W. (1996). In vitro assessment of embryo viability. Theriogenology 45, 316.CrossRefGoogle Scholar
Park, S.P., Kim, E.Y., Kim, D.I., Park, N.H., Won, Y.S., Yoon, S.H., Chung, K.S. & Lim, J.H. (1998). Systems for production of calves from Hanwoo (Korean native cattle) IVM/IVF/IVC blastocyst. I. Hanwoo IVM/IVF/IVC blastocyst cryopreserved by vitrification. Korean J. Anim. Reprod. 22, 349–57.Google Scholar
Ravagnan, L., Gurbuxani, S., Susin, S.A., Maisse, C., Daugas, E., Zamzami, N., Mak, T., Jaattela, M., Penninger, J.M., Garrido, C. & Kroemer, G. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 3, 839–43.CrossRefGoogle ScholarPubMed
Salveson, G.S. & Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443–6.CrossRefGoogle Scholar
Shin, S., Sung, B.J., Cho, Y.S., Kim, H.J., Ha, N.C., Hwang, J.I., Chung, C.W., Jung, Y.K. & Oh, B.H. (2001). An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40, 1117–23.CrossRefGoogle ScholarPubMed
Takayama, S., Reed, J.C. & Homma, S. (2003). Heat-shock proteins as regulators of apoptosis. Oncogene 22, 9041–7.CrossRefGoogle ScholarPubMed
Zaninovic, N., Rimarachin, J.A. & Veeck, L.L. (1997). Fas (APO-1) receptor/Fas ligand expression in human gametes and pre-embryos in vitro. Hum. Reprod. 13 (Abstract Book), 40.CrossRefGoogle Scholar