Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:11:05.917Z Has data issue: false hasContentIssue false

In vitro effect of various cryoprotectants on the semen quality of endangered Oravka chicken

Published online by Cambridge University Press:  12 December 2017

Andrea Svoradová*
Affiliation:
Constantine the Philosopher University in Nitra, Faculty of Natural Sciences, Department of Zoology and Anthropology, Tr. A. Hlinku 1, 949 74 Nitra, Slovak Republic.
Lenka Kuželová
Affiliation:
Slovak University of Agriculture in Nitra, Research Centre AgroBioTech, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
Jaromír Vašíček
Affiliation:
Slovak University of Agriculture in Nitra, Research Centre AgroBioTech, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic. Research Institute for Animal Production in Nitra, NPPC, Lužianky, Slovak Republic.
Andrej Baláži
Affiliation:
Research Institute for Animal Production in Nitra, NPPC, Lužianky, Slovak Republic.
Emília Hanusová
Affiliation:
Research Institute for Animal Production in Nitra, NPPC, Lužianky, Slovak Republic.
Peter Chrenek
Affiliation:
Research Institute for Animal Production in Nitra, NPPC, Lužianky, Slovak Republic. Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Science, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
*
All correspondence to: Andrea Svoradová. Constantine the Philosopher University in Nitra, Faculty of Natural Sciences, Department of Zoology and Anthropology, Tr. A. Hlinku 1, 949 74 Nitra, Slovak Republic. Tel: +421 0376408720. E-mail: [email protected]

Summary

We aimed to compare the effect of three different permeating cryoprotectants on the post-thaw spermatozoa quality. Pooled semen from Oravka cock line (n = 6) was diluted in Kobidil+ extender and frozen in cryoprotectant solutions containing 8% dimethylsulfoxide (DMSO), 8% ethylene glycol (EG) or 8% glycerol (GL) in liquid nitrogen vapours before being plunged into the liquid nitrogen. Spermatozoa motility parameters were assessed in vitro after freezing–thawing by a computer-assisted semen analysis (CASA) system and viability status was examined using fluorescent probes. The lower percentage (P < 0.05) of motile and progressively moving spermatozoa immediately after thawing were obtained in all experimental groups (DMSO, EG, GL) compared with the control. Significant (P < 0.05) differences in total motility and progressive movement between GL and DMSO, EG groups were observed. However, the higher number (P < 0.05) of acrosome damaged spermatozoa was found in the DMSO and EG groups and no significant differences were observed in the GL group compared with the control. Differences (P < 0.05) between experimental groups and the control in the results of spermatozoa necrosis were observed. No significant differences in the percentage of apoptotic spermatozoa were found between control and experimental groups. However, significant differences (P < 0.05) in number of live and necrotic spermatozoa between GL and DMSO, EG groups were examined. The findings of the present study indicate that glycerol seems to be suitable for semen cryopreservation in the gene banks. In addition, fertility evaluation in vivo is needed in order to evaluate the possible contribution for the bank of animal genetic resources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbato, G.F., Cramer, P.G. & Hammerstedt, R.H. (1998). A practical in vitro sperm–egg binding assay that detects subfertile males. Biol. Reprod. 58, 686–99.CrossRefGoogle ScholarPubMed
Blesbois, E. (2007). Current status in avian semen cryopreservation. Worlds Poult. Sci. J. 63, 213–22.CrossRefGoogle Scholar
Bongalhardo, D.C., Somnapan-Kakuda, N. & Buhr, M.M. (2002). Isolation and unique composition of purified head plasma membrane from rooster sperm. J. Poult. Sci. 81, 1877–83.CrossRefGoogle ScholarPubMed
Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J.P. (1999). In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo . Cryobiology 39, 185–91.CrossRefGoogle ScholarPubMed
Chmelničná, Ľ. Oravka. (2004). Ohrozené plemená zvierat na Slovensku. Nitra: SPU. pp. 37–52.Google Scholar
Christersen, P., Stenvang, J.P. & Godfrey, W.L. (2005). A flow cytometric method for rapid determination of sperm concentration and viability in mammalian and avian semen. J. Androl. 25, 255–64.CrossRefGoogle Scholar
Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M.A., Lassota, P. & Traganos, F. (1992). Features of apoptotic cells measured by flow cytometry. Cytometry 13, 795808.CrossRefGoogle ScholarPubMed
Davis, R.O. & Siemers, R.J. (1995). Derivation and reliability of kinematic measures of sperm motion. Reprod. Fertil. Dev. 7, 857–69.CrossRefGoogle ScholarPubMed
Donoghue, A.M. & Wishart, G.J. (2000). Storage of poultry semen. Anim. Reprod. Sci. 62, 213–32.CrossRefGoogle Scholar
Faleiro, L. & Lazebnik, Y. (2000). Caspases disrupt the nuclear cytoplasmic barrier. J. Cell. Biol. 151, 951–9.CrossRefGoogle ScholarPubMed
Gliozzi, T.M., Zaniboni, L. & Cerolini, S. (2011). DNA fragmentation in chicken spermatozoa during cryopreservation. Theriogenology 75, 1613–22.CrossRefGoogle ScholarPubMed
Hanusová, E., Hrnčár, C., Oravcová, M. & Hanus, A. (2014). Characterization of genetic resource in chicken of Oravka breed. Slovak J. Anim. Sci. 47, 15.Google Scholar
Hanzawa, S., Niinomi, T., Miyata, T., Tsutsui, M., & Tajima, A. (2010). Cryopreservation of chicken semen using N-methylacetamide as cryoprotective agent. Japan. Poult. Sci. Assoc. 47, 2732.Google Scholar
Hou, M.L., Huang, S.Y., Lai, Y.K. & Lee, W.C. (2008). Geldanamycin augments nitric oxide production and promotes capacitation in boar spermatozoa. Anim. Reprod. Sci. 104, 5668.CrossRefGoogle ScholarPubMed
Hrnčár, C. (2008). Orawki . Woliera 52, 620.Google Scholar
Iaffaldano, N., Di Iorio, M., Miranda, M., Zaniboni, L., Manchisi, A. & Cerolini, S. (2016a). Cryopreserving turkey semen in straws and nitrogen vapor using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality. Br. Poult. Sci. 57, 264–70.CrossRefGoogle ScholarPubMed
Iaffaldano, N., Di Iorio, M., Cerolini, S. & Manchisi, A. (2016b). Overview of turkey semen storage: focus on cryopreservation – a review. Ann. Anim. Sci. 16, 961–74.CrossRefGoogle Scholar
Idziorek, T., Estaquier, J., De Bells, F. & Ameisen, J.C. (1995). YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunolog. Methods 185, 249–58.CrossRefGoogle ScholarPubMed
Kroemer, G., Dallaporta, B. & Resche-Rigon, M. (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–42.CrossRefGoogle ScholarPubMed
Liegler, T.J., Hyun, W., Yen, T.S. & Stites, D.P. (1995). Detection and quantification of live, apoptotic, and necrotic human peripheral lymphocytes by single-laser flow cytometry. Clin. Diagn. Lab. Immunol. 2, 369–76.CrossRefGoogle ScholarPubMed
Long, J.A. (2006). Avian semen cryopreservation: What are the biological challenges? Poult. Sci. 85, 232–6.CrossRefGoogle ScholarPubMed
Long, J.A., Purdy, P.H., Zuidberg, K., et al. (2014). Cryopreservation of turkey semen: effect of breeding line and freezing method on post-thaw sperm quality, fertilization, and hatching. Cryobiology 68, 371–8.CrossRefGoogle ScholarPubMed
Martin, G., Sabido, O., Durand, P. & Levy, R. (2004). Cryopreservation induces an apoptosis like mechanism in bull sperm. Biol. Reprod. 71, 2837.CrossRefGoogle ScholarPubMed
Martínez-Pastor, F., Mata-Campuzano, M., Alvarez-Rodríguez, M., et al. (2010). Probes and techniques for sperm evaluation by flow cytometry. Reprod. Domest. Anim. 45, 6778.CrossRefGoogle ScholarPubMed
Moce, E., Grasseau, I. & Blesbois, E. (2010). Cryoprotectant and freezing process alter the ability of chicken sperm to acrosome react. Anim. Reprod. Sci. 122, 359–66.CrossRefGoogle ScholarPubMed
Mosca, F., Madeddu, M., Sayed, A.A., Zaniboni, L., Iaffaldano, N., & Cerolini, S. (2016). Combined effect of permeant and non-permeant cryoprotectants on the quality of frozen/thawed chicken sperm. Cryobiology 73, 343–7.CrossRefGoogle ScholarPubMed
Mphaphathi, M.L., Luseba, D., Sutherland, B., & Nedambale, T.L. (2012). Comparison of slow freezing and vitrification methods for Venda cockerel's spermatozoa. Open J. Anim. Sci. 2, 204–10.CrossRefGoogle Scholar
Mphaphathi, M.L., Seshoka, M.M., Luseba, D., Sutherland, B., & Nedambale, T.L. (2016). The characterisation and cryopreservation of Venda chicken semen. Asian. Pac. J. Reprod. 5, 132–9.CrossRefGoogle Scholar
Parker, H.M., Yeatman, J.B., Schultz, C.D., Zumwalt, C.D. & McDaniel, C.D. (2000). Use of sperm analyser for evaluating broiler breeder males: selection of young broiler breeder cocks for the sperm quality index increases fertile egg production. Poult. Sci. 79, 771–7.CrossRefGoogle Scholar
Peters, S.O., Omidiji, E.A., Ikeobi, C.O.N., Ozoje, M.O. & Ademambo, O.A. (2004). Effect of naked neck and frizzled genes on egg traits, fertility and hatchability in local chicken. Self sufficiency of animal protein in Nigeria. In Proc. 9th Ann. Conf. Anim. Sci. Assoc. Nig., Abakaliki, Nig., Ebonyi State University, Nigeria, pp. 262–4.Google Scholar
Purdy, P.H., Song, Y., Silversides, F.G. & Blackburn, H.D. (2009). Evaluation of glycerol removal techniques, cryoprotectants, and insemination methods for cryopreserving rooster sperm with implications of regeneration of breed or line or both. Poult. Sci. 88, 2184–91.CrossRefGoogle ScholarPubMed
Rijsselaere, T., Van Soom, A., Tanghe, S., Coryn, M., Maes, D. & de Kruif, A. (2005). New techniques for the assessment of canine semen quality: a review. Theriogenology 64, 706– 19.CrossRefGoogle ScholarPubMed
Rowe, P.J., Comhaire, F.H., Hargreave, T.B. & Mahmoud, A.M.A. (2000). WHO Manual for the Standard Investigation and the Diagnosis of the Infertile Couple. United Kingdom, University Press Cambridge. p. 87.Google Scholar
Santiago-Moreno, J., Toledano-Díaz, A., et al. (2011). Semen cryopreservation for the creation of a Spanish poultry breeds cryobank: optimization of freezing rate and equilibration time. Poultry Sci. 90, 2047–53.CrossRefGoogle ScholarPubMed
Santiago-Moreno, J., Castaño, C., Toledano-Díaz, A., Coloma, M.A., López-Sebastián, A., Prieto, M.T. & Campo, J.L. (2012). Cryoprotective and contraceptive properties of egg yolk as an additive in rooster sperm diluents. Cryobiology 65, 230–4.CrossRefGoogle ScholarPubMed
Sasaki, K., Tatsumi, T., Niinomi, T., Imai, T., Naito, M., Tajima, A., & Nishi, Y. (2010). A method for cryopreserving semen from Yakido roosters using N-methylacetamide as a cryoprotective agent. J. Poult. Sci. 47, 297301.CrossRefGoogle Scholar
Tabatabaei, S. & Aghaei, A. (2012). Effect of l-carnitine on sperm quality during liquid storage of chicken semen. Comp. Clin. Pathol. 21, 711–7.CrossRefGoogle Scholar
Vermes, I., Haanen, C. & Reutelingsperger, C. (2000). Flow cytometry of apoptotic cell death. J. Immunol. Methods 243, 167–90.CrossRefGoogle ScholarPubMed
Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. (1995). A novel assay for apoptosis: Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J. Immunol. Methods 184, 3951.CrossRefGoogle Scholar
Verstegen, J., Iguer-Ouada, M. & Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–79.CrossRefGoogle ScholarPubMed
Weis, J., Gardiánová, I., Hrnčár, C., Mindek, S., Svobodová, I. & Bujko, J. (2010). Analýza početnosti autochtónnych plemien kúr na území Slovenskej republiky. Acta Fytotechn. Zootechn. 10, 31–3.Google Scholar