Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:22:43.885Z Has data issue: false hasContentIssue false

In vitro development of mouse somatic nuclear transfer embryos: effects of donor cell passages and electrofusion

Published online by Cambridge University Press:  01 August 2008

Gang Zhang
Affiliation:
State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100080, P. R. China. Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
Qing-Yuan Sun
Affiliation:
State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100080, P. R. China.
Da-Yuan Chen*
Affiliation:
State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100101, P. R. China. State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100080, P. R. China.
*
All correspondence to: Da-Yuan Chen. State Key Laboratory of Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100101, P. R. China. Tel: +86 010 64807052. Fax: +86 010 64807090. e-mail: [email protected].

Summary

In this study, C57BL/6 adult male mouse ear fibroblast cells and Kunming mouse M2 oocytes were used as donors and recipients, respectively, to investigate the effect of passage number on donor cells and electrofusion times on the in vitro development of nuclear transfer (NT) embryos. The results demonstrated firstly that when the ear fibroblast cells from either 2–4, 5–7 or 8–10 passages were used as donors, respectively, to produce NT embryos, the number of passages undergone by the donor cells had no significant effect on the in vitro development of NT embryos. The developmental rates for morula/blastocyst were 15.2, 13.3 and 14.0%, respectively, which were not significantly difference (p > 0.05). Secondly, when the NT embryos were electrofused, there was no significant difference between the fusion ratio for the first electrofusion and the second electrofusion (p > 0.05). The developmental rates of the 2-cell and 4-cell stages that had undergone only one electrofusion, however, were significantly higher than those that had had two electrofusions (65.7% compared with 18.4% and 36.4% compared with 6.1%; p < 0.01), furthermore the NT embryos with two electrofusions could not develop beyond the 4-cell stage. This study suggests that this protocol might be an alternative method for mouse somatic cloning, even though electrofusion can exert negative effects on the development of NT embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J., Ayres, S.L., Denniston, R.S., Hayes, M.L., Ziomek, C.A., Meade, H.M., Godke, R.A., Gavin, W.G., Overstrom, E.W. & Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–61.CrossRefGoogle ScholarPubMed
Chesne, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L. & Renard, J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–9.CrossRefGoogle ScholarPubMed
Eggan, K., Baldwin, K., Tackett, M., Osborne, J., Gogos, J., Chess, A., Axel, R. & Jaenisch, R. (2004). Mice cloned from olfactory sensory neurons. Nature 428, 44–9.CrossRefGoogle ScholarPubMed
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R. & Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.CrossRefGoogle ScholarPubMed
Hochedlinger, K. & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–8.CrossRefGoogle ScholarPubMed
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H. & Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–8.CrossRefGoogle ScholarPubMed
Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hwang, W.S., Hossein, M.S., Kim, J.J., Shin, N.S., Kang, S.K. & Lee, B.C. (2007). Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9, 130–7.CrossRefGoogle ScholarPubMed
Kong, F.Y., Zhang, G., Zhong, Z.S., Li, Y.L., Sun, Q.Y. & Chen, D.Y. (2005). Transplantation of male pronucleus derived from in vitro fertilization of enucleated oocyte into parthenogenetically activated oocyte results in live offspring in mouse. Zygote 13, 35–8.CrossRefGoogle Scholar
Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M. & Yang, X. (2000). Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl. Acad. Sci. USA 97, 990–5.CrossRefGoogle ScholarPubMed
Lee, B.C., Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hossein, M.S., Shamim, M.H., Kim, J.J., Kang, S.K., Schatten, G. & Hwang, W.S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.CrossRefGoogle ScholarPubMed
Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. (2004). Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–9.CrossRefGoogle ScholarPubMed
Ogura, A., Inoue, K., Ogonuki, N., Noguchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F. & Matsuda, J. (2000a). Production of male cloned mice from fresh, cultured and cryopreserved immature Sertoli cells. Biol. Reprod. 62, 1579–84.CrossRefGoogle ScholarPubMed
Ogura, A., Inoue, K., Takano, K., Wakayama, T. & Yanagimachi, R. (2000b). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev. 57, 55–9.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Ono, Y., Shimozawa, N., Ito, M. & Kono, T. (2001). Cloned mice from fetal fibroblast cells arrested at metaphase by serial nuclear transfer. Biol. Reprod. 64, 4450.CrossRefGoogle ScholarPubMed
Parker, H.G., Kruglyak, L. & Ostrander, E.A. (2006). Molecular genetics: DNA analysis of a putative dog clone. Nature 440, E12.CrossRefGoogle ScholarPubMed
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.CrossRefGoogle ScholarPubMed
Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L. & Westhenin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.CrossRefGoogle ScholarPubMed
Tsunoda, Y., Yasui, T., Nakamura, K., Uchida, T. & Sugie, T. (1986). Effect of cutting the zona pellucida on the pronuclear transplantation in the mouse. J. Exp. Zool. 240, 119–25.CrossRefGoogle ScholarPubMed
Wakayama, T., Perry, A.C.F., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.CrossRefGoogle ScholarPubMed
Wakayama, T. & Yanagimachi, R. (1999b). Cloning of male mice from adult tail-tip cells. Nat. Genet. 22, 127–8.CrossRefGoogle ScholarPubMed
Wakayama, T., Rodriguez, I., Perry, A.C., Yanagimachi, R. & Mombaerts, P. (1999a). Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. USA 96, 14984–9.CrossRefGoogle ScholarPubMed
Wang, M.K., Chen, D.Y., Liu, J.L., Li, G.P. & Sun, Q.Y. (2001a). In vitro fertilization of mouse oocytes reconstructed by transfer of metaphase 2 chromosomes results in live births. Zygote 9, 914.CrossRefGoogle Scholar
Wang, M.K., Liu, J.L., Li, G.P., Lian, L. & Chen, D.Y. (2001b). Sucrose pretreatment for enucleation: an efficient and non-damage method for removing the spindle of the mouse M2 oocytes. Mol. Reprod. Dev. 58, 432–6.3.0.CO;2-Y>CrossRefGoogle Scholar
Wilmut, I., Schnieke, A.E., Mcwhir, J., Kind, A.J. & Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–3.CrossRefGoogle ScholarPubMed
Woods, G.L., White, K.L., Vanderwall, D.K., Li, G.P., Aston, K.I., Bunch, T.D., Meerdo, L.N. & Pate, B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.CrossRefGoogle ScholarPubMed
Zhang, G., Sun, Q.Y. & Chen, D.Y. (2007). Effects of sucrose treatment on the development of mouse nuclear transfer embryos with morula blastomeres as donors. Zygote (in press).Google Scholar
Zhou, Q., Renard, J.P., Le, F.G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A. & Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocytes activation. Science 302, 1179.CrossRefGoogle Scholar