Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T11:06:33.809Z Has data issue: false hasContentIssue false

Identification of four genes required for mammalian blastocyst formation

Published online by Cambridge University Press:  05 December 2012

Marc Maserati
Affiliation:
Department of Veterinary and Animal Science, University of Amherst, MA 01003, USA.
Xiangpeng Dai
Affiliation:
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
Melanie Walentuk
Affiliation:
Mass General Fertility Center, 55 Fruit St., Yawkey Building 10A, Boston, MA 02114, USA.
Jesse Mager*
Affiliation:
University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA.
*
All correspondence to: Jesse Mager. University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA. Tel: +1 413 545 7368. Fax: +1 413 545 6326. e-mail: [email protected]

Summary

RNA transcription, processing and translation are fundamental molecular processes required for development, growth and cell viability. Towards the functional annotation of the genome, we are engaged in a reverse genetic screen using mammalian preimplantation embryos as a model system. Here we report the essential function of four RNA processing/splicing factors (Sf3b14, Sf3b1, Rpl7l1, and Rrp7a) and show that each of these genes is required for blastocyst formation in the mouse. As very little information is known about these genes, we characterized their normal expression and localization in mouse embryos as well as phenotypic analysis of loss of function during preimplantation development. Functional knockdown of each gene product results in normal morula development but there is failure to form a blastocoel cavity or morphologically differentiated trophectoderm. We show that zygotic genome activation does occur as well as initial lineage specification in the absence of each factor. Consistent with a role in RNA splicing, we demonstrate that the absence of Sf3b14 and Sf3b1 in 8-cell and morula-stage embryos results in a specific reduction of intron containing transcripts, but no reduction single-exon genes. Taken together, we show critical developmental and molecular requirements of Sf3b14, Sf3b1, Rpl7l1, and Rrp7a during mammalian preimplantation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–9.CrossRefGoogle ScholarPubMed
Austin, C.P., Battey, J.F., Bradley, A., et al. (2004). The knockout mouse project. Nat. Genet. 36, 921–4.Google ScholarPubMed
Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. & Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–55.CrossRefGoogle ScholarPubMed
Das, B.K., Xia, L., Palandjian, L., Gozani, O., Chyung, Y. & Reed, R. (1999). Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol. Cell. Biol. 19, 6796–802.CrossRefGoogle ScholarPubMed
Dietrich, J.E. & Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–31.CrossRefGoogle ScholarPubMed
Furumai, R., Uchida, K., Komi, Y., Yoneyama, M., Ishigami, K., Watanabe, H., Kojima, S. & Yoshida, M. (2010). Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci. 101, 2483–9.CrossRefGoogle ScholarPubMed
Gozani, O., Potashkin, J. & Reed, R. (1998). A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–60.CrossRefGoogle Scholar
Griffith, G.J., Trask, M.C., Hiller, J., Walentuk, M., Pawlak, J.B., Tremblay, K.D. & Mager, J. (2011). Yin-yang1 is required in the mammalian oocyte for follicle expansion. Biol. Reprod. 84, 654–63.CrossRefGoogle ScholarPubMed
Guan, C., Ye, C., Yang, X., Gao, J., 2010. A review of current large-scale mouse knockout efforts. Genesis 48, 7385.CrossRefGoogle ScholarPubMed
Hoffman, B.G., Zavaglia, B., Witzsche, J., Ruiz de Algara, T., Beach, M., Hoodless, P.A., Jones, S.J., Marra, M.A. & Helgason, C.D. (2008). Identification of transcripts with enriched expression in the developing and adult pancreas. Genome Biol. 9, R99.CrossRefGoogle ScholarPubMed
Isono, K., Mizutani-Koseki, Y., Komori, T., Schmidt-Zachmann, M.S. & Koseki, H. (2005). Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 19, 536–41.CrossRefGoogle ScholarPubMed
Kawai, J., Shinagawa, A., Shibata, K., et al. (2001). Functional annotation of a full-length mouse cDNA collection. Nature 409, 685–90.Google ScholarPubMed
Komarnitsky, P., Cho, E.J. & Buratowski, S. (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–60.CrossRefGoogle ScholarPubMed
Kuroiwa, Y., Kaneko-Ishino, T., Kagitani, F., Kohda, T., Li, L.L., Tada, M., Suzuki, R., Yokoyama, M., Shiroishi, T., Wakana, S., Barton, S.C., Ishino, F. & Surani, M.A. (1996). Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 12, 186–90.CrossRefGoogle ScholarPubMed
Maserati, M., Walentuk, M., Dai, X., Holston, O., Adams, D. & Mager, J. (2011). Wdr74 is required for blastocyst formation in the mouse. PLoS One 6: e22516. doi:10.1371/journal.pone.0022516 CrossRefGoogle ScholarPubMed
Massiello, A., Roesser, J.R. & Chalfant, C.E. (2006). SAP155 Binds to ceramide-responsive RNA cis-element 1 and regulates the alternative 5’ splice site selection of Bcl-x pre-mRNA. FASEB J. 20, 1680–2.CrossRefGoogle ScholarPubMed
Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. & Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–42.CrossRefGoogle ScholarPubMed
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H. & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–91.CrossRefGoogle ScholarPubMed
Okazaki, Y., Furuno, M., Kasukawa, T., et al. (2002). Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–73.Google Scholar
Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A.K. (2008). Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–91.CrossRefGoogle ScholarPubMed
Schellenberg, M.J., Dul, E.L. & MacMillan, A.M. (2011). Structural model of the p14/SF3b155. branch duplex complex. RNA 17, 155–65.CrossRefGoogle ScholarPubMed
Strumpf, D., Mao, C.A., Yamanaka, Y., Ralston, A., Chawengsaksophak, K., Beck, F. & Rossant, J. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–102.CrossRefGoogle ScholarPubMed
Szabo, P.E. & Mann, J.R. (1995). Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev. 9, 3097–108.CrossRefGoogle ScholarPubMed
Tamplin, O.J., Kinzel, D., Cox, B.J., Bell, C.E., Rossant, J. & Lickert, H. (2008). Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics 9, 511.CrossRefGoogle ScholarPubMed
Wang, C., Chua, K., Seghezzi, W., Lees, E., Gozani, O. & Reed, R. (1998). Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev. 12, 1409–14.CrossRefGoogle ScholarPubMed