Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T07:15:03.507Z Has data issue: false hasContentIssue false

Heat-induced triploids in Brycon amazonicus: a strategic fish species for aquaculture and conservation

Published online by Cambridge University Press:  05 April 2021

Nivaldo Ferreira do Nascimento
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil Universidade de São Paulo, Faculdade de Medicina Veterinária e Ciência Animal, Departamento de Reprodução Animal, Pirassununga, Brazil Universidade Federal Rural de Pernambuco (UFRPE), Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, s/n, Serra Talhada – PE
Rafaela Manchin Bertolini
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Botucatu, SP, Brazil
Lucia Soares Lopez
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Botucatu, SP, Brazil
Laura Satiko Okada Nakaghi
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP14884-900, Brazil
Paulo Sérgio Monzani
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil
José Augusto Senhorini
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Botucatu, SP, Brazil
Roberto Castro Vianna
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil China Three Gorges Corporation (CTG), Brazil
George Shigueki Yasui*
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Botucatu, SP, Brazil
*
Author for correspondence: George Shigueki Yasui. Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP13630-970, Brazil. E-mail: [email protected]

Summary

Triploidization plays an important role in aquaculture and surrogate technologies. In this study, we induced triploidy in the matrinxã fish (Brycon amazonicus) using a heat-shock technique. Embryos at 2 min post fertilization (mpf) were heat shocked at 38°C, 40°C, or 42°C for 2 min. Untreated, intact embryos were used as a control. Survival rates during early development were monitored and ploidy status was confirmed using flow cytometry and nuclear diameter analysis of erythrocytes. The hatching rate reduced with heat-shock treatment, and heat-shock treatments at 42°C resulted in no hatching events. Optimal results were obtained at 40°C with 95% of larvae exhibiting triploidy. Therefore, we report that heat-shock treatments of embryos (2 mpf) at 40°C for 2 min is an effective way to induce triploid individuals in B. amazonicus.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamov, NSdM, Nascimento, NFd, Maciel, ECS, Pereira-Santos, M, Senhorini, JA, Calado, LL, Evangelista, MM, Nakaghi, LSO, Guerrero, AHM and Fujimoto, T (2017). Triploid induction in the yellowtail tetra, Astyanax altiparanae, using temperature shock: tools for conservation and aquaculture. J World Aquacult Soc 48, 741–50.CrossRefGoogle Scholar
Agostinho, AA, Gomes, LC, Santos, NC, Ortega, JC and Pelicice, FM (2016). Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res 173, 2636.CrossRefGoogle Scholar
Arai, K (2001). Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197, 205–28.CrossRefGoogle Scholar
Barletta, M, Jaureguizar, A, Baigun, C, Fontoura, NF, Agostinho, AA, Almeida-Val, VMFd, Val, AL, Torres, RA, Jimenes-Segura, LF and Giarrizzo, T (2010). Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J Fish Biol 76, 211876.CrossRefGoogle ScholarPubMed
Benfey, TJ (2016). Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Rev Aquacult 8, 264–82.CrossRefGoogle Scholar
Bertolini, RM, Lopez, LS, do Nascimento, NF, Arashiro, DR, de Siqueira-Silva, DH, dos Santos, SCA, Senhorini, JA and Yasui, GS (2020). Strategies for aquaculture and conservation of Neotropical catfishes based on the production of triploid Pimelodus maculatus . Aquacult Int 28, 127–37.CrossRefGoogle Scholar
Cuñado, N, Terrones, J, Sánchez, L, Martínez, P and Santos, J (2002). Sex-dependent synaptic behaviour in triploid turbot, Scophthalmus maximus (Pisces, Scophthalmidae). Heredity 89, 460–4.CrossRefGoogle Scholar
de Siqueira-Silva, DH, Saito, T, dos Santos-Silva, AP, da Silva Costa, R, Psenicka, M and Yasui, GS (2018). Biotechnology applied to fish reproduction: tools for conservation. Fish Physiol Biochem 44, 1469–85.CrossRefGoogle ScholarPubMed
do Nascimento, NF, de Siqueira-Silva, DH, Pereira-Santos, M, Fujimoto, T, Senhorini, JA, Nakaghi, LSO and Yasui, GS (2017a). Stereological analysis of gonads from diploid and triploid fish yellowtail tetra Astyanax altiparanae (Garutti & Britski) in laboratory conditions. Zygote 25, 537–44.CrossRefGoogle Scholar
do Nascimento, NF, Pereira-Santos, M, Piva, LH, Manzini, B, Fujimoto, T, Senhorini, JA, Yasui, GS and Nakaghi, LSO (2017b). Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae . Aquaculture 471, 163–71.CrossRefGoogle Scholar
do Nascimento, NF, Pereira-Santos, M, Levy-Pereira, N, Monzani, PS, Niedzielski, D, Fujimoto, T, Senhorini, JA, Nakaghi, LSO and Yasui, GS (2020). High percentages of larval tetraploids in the yellowtail tetra Astyanax altiparanae induced by heat shock: the first case in Neotropical characins. Aquaculture 520, 734938.CrossRefGoogle Scholar
Dunham, R (2004). Aquaculture and Fisheries Biotechnology: Genetic Approaches. CABI. ISBN 0-85199-596-9.CrossRefGoogle Scholar
Flajšhans, M, Gela, D, Kocour, M, Buchtová, H, Rodina, M, Pšenička, M, Kašpar, V, Piačková, V, Sudová, E and Linhart, O (2010). A review on the potential of triploid tench for aquaculture. Rev Fish Biol Fish 20, 317–29.CrossRefGoogle Scholar
Fricke, R, Eschmeyer, W and Van der Laan, R (2018). Catalog of fishes: genera, species, references. California Academy of Sciences, San Francisco, CA, USA http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.Google Scholar
Fukushima, H, Bailone, R, Weiss, L, Martins, M and Zaniboni-Filho, E (2012). Triploidy in the hematology of jundia juveniles (Siluriformes: Heptapteridae). Brazil J Biol 72, 147–51.CrossRefGoogle Scholar
Golpour, A, Siddique, MAM, Siqueira-Silva, DH and Pšenička, M (2016). Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review. Biologia 71, 853–64.CrossRefGoogle Scholar
Gomes, LC (2010). Matrinxã (Brycon amazonicus). In (ed. LCGB Baldisserotto) Espécies Nativas para Piscicultura no Brasil, pp. 608–91.Google Scholar
Goo, IB, Im, JH, Gil, HW, Lim, SG and Park, I-S (2015). Comparison of cell and nuclear size difference between diploid and induced triploid in marine medaka, Oryzias dancena . Dev Reprod 19, 127.CrossRefGoogle ScholarPubMed
Goto, R and Saito, T (2019). A state-of-the-art review of surrogate propagation in fish. Theriogenology 133, 216–27.CrossRefGoogle ScholarPubMed
Honczaryk, A and Inoue, LAKA (2009). Produção comercial de alevinos de matrinxã na Amazônia Ocidental. Embrapa Amazônia Ocidental-Circular Técnica (INFOTECA-E).Google Scholar
ICMBio (2016). Sumário Executivo do Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. ICMBio Brasilia.Google Scholar
Lacerda, SM, Batlouni, SR, Costa, GM, Segatelli, TM, Quirino, BR, Queiroz, BM, Kalapothakis, E and França, LR (2010). A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One 5, e10740.CrossRefGoogle ScholarPubMed
Molina, WF, Margarido, VP and Galetti, PM Jr (2007). Natural triploidy in Leporinus cf. elongatus bearing sex chromosomes. Genet Mol Biol 30, 567–9.CrossRefGoogle Scholar
Nóbrega, RH, Greebe, CD, Van De Kant, H, Bogerd, J, de França, LR and Schulz, RW (2010). Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS One 5, e12808.CrossRefGoogle ScholarPubMed
Okutsu, T, Shikina, S, Kanno, M, Takeuchi, Y and Yoshizaki, G (2007). Production of trout offspring from triploid salmon parents. Science 317, 1517.CrossRefGoogle ScholarPubMed
Pansonato-Alves, JC, Oliveira, C and Foresti, F (2011). Karyotypic conservatism in samples of Characidium cf. zebra (Teleostei, Characiformes, Crenuchidae): physical mapping of ribosomal genes and natural triploidy. Genet Mol Biol 34, 208–13.CrossRefGoogle ScholarPubMed
Piferrer, F, Beaumont, A, Falguiere, J-C, Flajšhans, M, Haffray, P and Colombo, L (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125–56.CrossRefGoogle Scholar
Reis, R, Albert, J, Di Dario, F, Mincarone, M, Petry, P and Rocha, L (2016). Fish biodiversity and conservation in South America. J Fish Biol 89, 1247.CrossRefGoogle Scholar
Saito, T, Goto-Kazeto, R, Arai, K and Yamaha, E (2008). Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78, 159–66.CrossRefGoogle ScholarPubMed
Teplitz, R, Joyce, J, Doroshov, S and Min, B (1994). A preliminary ploidy analysis of diploid and triploid salmonids. Can J Fish Aqua Sci 51, 3841.CrossRefGoogle Scholar
Utsunomia, R, Pansonato-Alves, JC, Paiva, LRS, Costa Silva, GJ, Oliveira, C, Bertollo, LAC and Foresti, F (2014). Genetic differentiation among distinct karyomorphs of the wolf fish Hoplias malabaricus species complex (Characiformes, Erythrinidae) and report of unusual hybridization with natural triploidy. J Fish Biol 85, 1682–92.CrossRefGoogle ScholarPubMed
Vitule, JRS, Freire, CA and Simberloff, D (2009). Introduction of non-native freshwater fish can certainly be bad. Fish Fish 10, 98108.CrossRefGoogle Scholar
Vitule, J, Da Costa, A, Frehse, F, Bezerra, L, Occhi, T, Daga, V and Padial, A (2017). Comment on ‘Fish biodiversity and conservation in South America by Reis et al. (2016)’. J Fish Biol 90, 1182–90.CrossRefGoogle Scholar
Xavier, PL, Senhorini, JA, Pereira-Santos, M, Fujimoto, T, Shimoda, E, Silva, LA, dos Santos, SA and Yasui, GS (2017). A flow cytometry protocol to estimate DNA content in the yellowtail tetra Astyanax altiparanae . Front Genet 8, 131.CrossRefGoogle ScholarPubMed
Yasui, GS, Fujimoto, T and Arai, K (2010). Restoration of the loach, Misgurnus anguillicaudatus, from cryopreserved diploid sperm and induced androgenesis. Aquaculture 308(Supp 1), S1404.CrossRefGoogle Scholar
Yasui, GS, Nakaghi, LSO, Monzani, PS, Nascimento, NFd, Pereira dos Santos, M, Goes, CAG, Porto-Foresti, F and Senhorini, JA (2020). Triploidization in the streaked prochilod Prochilodus lineatus inferred by flow cytometry, blood smears and karyological approaches. J Appl Ichthyol 36, 336–41.CrossRefGoogle Scholar
Yoshikawa, H, Morishima, K, Fujimoto, T, Arias-Rodriguez, L, Yamaha, E and Arai, K (2008). Ploidy manipulation using diploid sperm in the loach, Misgurnus anguillicaudatus: a review. J Appl Ichthyol 24, 410–4.CrossRefGoogle Scholar
Zaniboni-Filho, E, Reynalte-Tataje, D and Weingartner, M (2006). Potencialidad del género Brycon en la piscicultura brasileña. Rev. Colomb de Cienc Pecu 19, 233–40.Google Scholar