Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T17:02:42.909Z Has data issue: false hasContentIssue false

Germ cell differentiation and proliferation in the developing testis of the South American plains viscacha, Lagostomus maximus (Mammalia, Rodentia)

Published online by Cambridge University Press:  04 May 2011

C.R. Gonzalez
Affiliation:
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina.
M.L. Muscarsel Isla
Affiliation:
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina.
N.A. Fraunhoffer
Affiliation:
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina.
N.P. Leopardo
Affiliation:
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina.
A.D. Vitullo*
Affiliation:
Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina.
*
All correspondence to: Alfredo Daniel Vitullo. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD, Universidad Maimónides, Hidalgo 775, C1405BCK-Buenos Aires, Argentina. Tel: +54 11 4905 1112. Fax: +54 11 4905 1133. e-mail: [email protected]

Summary

Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelopoulou, R., Magre, S., Patsavoudi, E. & Jost, A. (1984). Initial phases of the rat testis differentiation in vitro. J. Embryol. Exp. Morphol. 83, 1531.Google Scholar
Angelopoulou, R., Balla, M., Lavranos, G., Chalikias, M., Kitsos, C., Baka, S. & Kittas, C. (2008). Evaluation of immunohistochemical markers of germ cells' proliferation in the developing rat testis: a comparative study. Tissue Cell 40, 4350.CrossRefGoogle ScholarPubMed
Baker, P.J. & O'Shaughnessy, P.J. (2001). Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122, 227–34.CrossRefGoogle ScholarPubMed
Calvo, J.C., Sagripanti, J.L., Peltzer, L.E., Guzman, J.A. & Charreau, E.H. (1986). Photoperiod follicle-stimulating hormone receptors and testicular function in viscacha (Lagostomus maximus maximus). Biol. Reprod. 35, 822–7.CrossRefGoogle Scholar
CCAC. Guía para el cuidado y uso de animales de laboratorio. Mexican edition. Ottawa, ON, Canada. National Academy Press; 2002.Google Scholar
Fraunhoffer, N.A., Jensen, F., Willis, M.A., Freysselinard, A.L., Inserra, P.I.F. & Vitullo, A.D. (2008). Perfil hormonal de Lagostomus maximus en un período de ovulación espontánea en mitad de la gestación. Proc. XXII Ann. Meeting Arg. Soc. Mammalian Biol. p. 27.Google Scholar
Fuentes, L.B., Caravaca, N., Pelzer, L.E., Scardapane, L.A., Piezzi, R.S. & Guzman, J.A. (1991). Seasonal variations in the testis and epididymis of viscacha (Lagostomus maximus maximus). Biol. Reprod. 45, 493–7.CrossRefGoogle Scholar
Gaskell, T.L., Esnal, A., Robinson, L.L., Anderson, R.A. & Saunders, P.T. (2004). Immunohistochemical profiling of germ cells within the human fetal testis: identification of three subpopulations. Biol. Reprod. 71, 2012–21.CrossRefGoogle ScholarPubMed
Honecker, F., Stoop, H., de Krijger, R.R., Chris Lau, Y.F., Bokemeyer, C. & Looijenga, L.H. (2004). Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells. J. Pathol. 203, 849–57.CrossRefGoogle ScholarPubMed
Jensen, F., Willis, M.A., Albamonte, M.S., Espinosa, M.B. & Vitullo, A.D. (2006). Naturally suppressed apoptosis prevents follicular atresia and oocyte reserve decline in the adult ovary of Lagostomus maximus (Rodentia, Caviomorpha). Reproduction 732, 301–8.CrossRefGoogle Scholar
Jensen, F., Willis, M.A., Leopardo, N.P., Espinosa, M.B. & Vitullo, A.D. (2008). The ovary of the gestating South American Plains viscacha (Lagostomus maximus): suppressed apoptosis and corpora lutea persistence. Biol. Reprod. 79, 240–6.CrossRefGoogle Scholar
Kerr, C.L., Hill, C.M., Blumenthal, P.D. & Gearhart, J.D. (2008). Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells 26, 412–21.CrossRefGoogle ScholarPubMed
Koji, T. & Hishikawa, Y. (2003). Germ cell apoptosis and its molecular trigger in mouse testes. Arch. Histol. Cytol. 66, 116.CrossRefGoogle ScholarPubMed
Kuopio, T., Pelliniemi, L.J. & Huhtaniemi, I. (1989). Rapid Leydig cell proliferation and luteinizing hormone receptor replenishment in the neonatal rat testis after a single injection of human chorionic gonadotropin. Biol. Reprod. 40, 135–43.CrossRefGoogle ScholarPubMed
Leal, M.C. & França, L.R. (2006). The seminiferous epithelium cycle length in the black tufted-ear marmoset (Callithrix penicillata) is similar to humans. Biol. Reprod. 74, 616–24.CrossRefGoogle ScholarPubMed
Leopardo, N., Jensen, C.F., Espinosa, M.B. & Vitullo, A.D. (2006). Desarrollo de la línea germinal femenina en el ovario fetal de Lagostomus maximus: supresión de la apoptosis y proliferación no restringida Proc. XVII Ann. Meeting, Chilean Soc. Rep. Biol. Develop. p. 74.Google Scholar
McLaren, A (2001). Mammalian germ cells: birth, sex and immortality. Cell Struct. Funct. 26, 119–22.CrossRefGoogle ScholarPubMed
Mitchell, R.T., Cowan, G., Morris, K.D., Anderson, R.A., Fraser, H.M., Mckenzie, K.J., Wallace, W.H., Kelnar, C.J., Saunders, P.T. & Sharpe, R.M. (2008). Germ cell differentiation in the marmoset (Callithrix jacchus) during foetal and neonatal life closely parallels that in the human. Hum. Reprod. 23, 2755–65.CrossRefGoogle ScholarPubMed
Muñoz, E.M., Fogal, T., Dominguez, S., Scardapane, L. & Piezzi, R.S. (2001). Ultrastructural and morphometric study of the Sertoli cell of the viscacha (Lagostomus maximus maximus) during the annual reproductive cycle. Anat. Rec. 262, 176–85.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Orth, J.M. (1984). The role of FSH in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 115, 1248–52.CrossRefGoogle ScholarPubMed
Pauls, K., Schorle, H., Jeske, W., Brehm, R., Steger, K., Wernert, N., Buttner, R. & Zhou, H. (2006). Spatial expression of germ cell markers during maturation of human fetal male gonads: an immunohistochemical study. Hum. Reprod. 21, 397404.CrossRefGoogle ScholarPubMed
Roberts, C.M. & Weir, B.J. (1973). Implantation in the plains viscacha, Lagostomus maximus. J. Reprod. Fert. 33, 299307.CrossRefGoogle ScholarPubMed
Ruwanpura, S.M., McLachlan, R.I. & Meachem, S.J. (2010). Hormonal regulation of male germ cell development. J. Endocrinol. 205, 117–31.CrossRefGoogle ScholarPubMed
Sinha Hikim, A.P., Amador, A.G., Klemcke, H., Bartke, A. & Russel, L.D. (1989a). Correlative morphology and endocrinology of Sertoli cells in hamsters testis in active and inactive states of spermatogenesis. Endocrinology 125, 1829–43.CrossRefGoogle Scholar
Sinha Hikim, A.P., Amador, A.G., Bartke, A. & Russel, L.D. (1989b). Structure/function relationship in active and inactive hamster Leydig cells: a correlative morphometric and endocrine study. Endocrinology 125, 1844–56.CrossRefGoogle Scholar
Tam, P.P. & Snow, M.H. (1981). Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64, 133–47.Google ScholarPubMed
Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M. & Noce, T. (2000). Expression and intracellular localization of mouse VASA-homologue protein during germ cell development. Mech. Develop. 93, 139–49.CrossRefGoogle ScholarPubMed
Van Vorstenbosch, C.J., Colenbrader, B. & Wensing, C.J. (1984). Leydig cell development in the pig testis during the late fetal and early postnatal period: an electron microscopic study with attention to the influence of fetal decapitation. Am. J. Anat. 169, 121–36.CrossRefGoogle Scholar
Wang, R.A., Nakane, P.K. & Koji, T. (1998). Autonomous cell death of mouse germ cells during fetal and postnatal period Biol. Reprod. 58, 1250–6.CrossRefGoogle ScholarPubMed
Weir, B.J. (1970). The management and breeding of some more hystricomorph rodents. Lab. Anim. 4, 8397.CrossRefGoogle ScholarPubMed
Weir, B.J. (1971a). The reproductive phisiology of the plains viscacha, Lagostomus maximus. J. Reprod. Fertil. 25, 355–63.CrossRefGoogle Scholar
Weir, B.J. (1971b). The reproductive organs of the female plains viscacha, Lagostomus maximus. J. Reprod. Fertil. 25, 365–73.CrossRefGoogle ScholarPubMed
Wilhelm, D., Palmer, S. & Koopman, P. (2007). Sex determination and gonadal development in mammals. Physiol. Rev. 87, 128.CrossRefGoogle ScholarPubMed
Zhao, G.Q. & Garbers, D.L. (2002). Male germ cell specification and differentiation. Develop. Cell. 2, 537–47.CrossRefGoogle ScholarPubMed