Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T14:02:41.868Z Has data issue: false hasContentIssue false

Genome organisation in the murine sperm nucleus

Published online by Cambridge University Press:  26 September 2008

Carol Jennings
Affiliation:
Cell Determination Laboratory, Departement of Development and Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
Don Powell*
Affiliation:
Cell Determination Laboratory, Departement of Development and Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
*
Don Powell, The Babraham Institute, Babraham, Cambridge CB2 4AT. Telephone: 01223 832312 Ext 337. Fax: 01223 836481.

Summary

The organisation of DNA sequences in the murine sperm nucleus was studied using in situ hybridisation of biotinylated DNA probes. The efficiency of this reaction was assessed using a dispersed repetitive DNA probe. Telomeric DNA was distributed around the nucleus. Centromeric and ribosomal DNA sequences occupied restricted domains in the sperm nucleus. DNA sequences for a transgene and a cluster of homeogenes occupied different, and rather less defined, domains. Together these results imply that both repetitive and protein-coding sequences are arranged in the nucleus in an ordered fashion.

Type
Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amati, B., Pick, L., Laroche, T. & Gasser, S.M. (1990). Nuclear scaffold attachment stimulates, but is not essential for ARS activity in Saccharomyces cerevisiae analysis of the Drosophila. ftz. Sar. SAR. EMBO. J. 9 4007–16.Google Scholar
Bellvé, A.R., Chandrika, R., Martinova, Y.S. & Barth, A.H. (1992). The perinuclear matrix as a structural element of the mouse sperm nucleus Biol. Reprod. 47 451–65.CrossRefGoogle ScholarPubMed
Bennett, K.L., Hill, R.E., Pietras, D.F., Woodworth-Gutai, M., Kane-Haas, C., Houston, J.M., Heath, J.K. & Hastie, N.D. (1984). Most highly repeated dispersed DNA families in the mouse genome. Mol. Cell Biol. 4, 1561–71.Google ScholarPubMed
Chatterjee, B. & Lo, C.W. (1988). Sequence heterogeneity in mouse centromeric cDNA. Nucleic Acids Res. 16, 1201.CrossRefGoogle Scholar
Cross, S., Lindsey, J., Fantes, J., McKay, S., McGill, N. & Cooke, H. (1990). The structure of a subterminal repeated sequence present on many human chromosomes. Nucleic Acids Res. 18, 6649–57.CrossRefGoogle ScholarPubMed
Davisson, M.T. (1989). Nucleolus organizer regions. In Genetic Variants and Strains of the Laboratory Mouse, 2nd edn, ed. Lyon, M.F. & A.G., Searle pp. 618–19. Oxford: Oxford University Press.Google Scholar
deLara, J., Wydner, K.L., Hyland, K.M. & Ward, S.W. (1993). Fluorescent in situ hybridization of the telomere repeat sequence in hamster sperm nuclear structures. J. Cell. Biochem. 53, 213–21.CrossRefGoogle Scholar
Evans, E.P. (1987). Karyotyping and sexing of gametes, embryos and fetuses and in situ hybridization to chromosomes. In Mammalian Development: A Practical Approach, ed. Monk, M., pp. 93114Oxford: IRL Press.Google Scholar
Graham, A., Papalopou, N., Lorimer, J., McVey, J.H., Tuddenham, E.G.D. & Krumlauf, R. (1988). Characterization of a murine homeo box gene, Hox-2.6, related to the Drosophila Deformed gene. Genes Dev. 2, 1424–38.CrossRefGoogle Scholar
Hecht, N.B. (1986). Regulation of gene expression during spermatogenesis. In Experimental Approaches to Mammalian Embryonic Development, ed. Rossant, J. & Pedersen, R.A., pp. 151–93. Cambridge: Cambridge University Press.Google Scholar
Jackson, D.A. & Cook, P.R. (1985). Transcription occurs at a nucleoskeleton. EMBO J. 4, 919–25.CrossRefGoogle Scholar
Jackson, D.A. & Cook, P.R. (1986). Replication occurs at a nucleoskeleton. EMBO J. 5, 1403–10.CrossRefGoogle Scholar
Lawrence, J.B., Singer, R.H. & Marselle, L.M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493502.CrossRefGoogle ScholarPubMed
Lo, C.W. (1986). Localization of low abundance DNA sequences in tissue sections by in situ hybridization. J. Cell Sci. 81, 143–62.CrossRefGoogle ScholarPubMed
Loir, M., Bouvier, D., Fornells, M., Lanneau, M. & Subirana, J.A. (1985). Interactions of nuclear proteins with DNA during sperm differentiation in the ram. Chromosoma 92, 304–12.CrossRefGoogle ScholarPubMed
Mahi, C.A. & Yanagimachi, R. (1975). Induction of nuclear decondensation of mammalian spermatozoa in vitro. J. Reprod. Fert. 44, 293–6.CrossRefGoogle ScholarPubMed
Marushige, Y. & Marushige, K. (1975). Transformation of sperm histone during formation and maturation of rat spermatozoa. J. Biol. Chem. 250, 3945.CrossRefGoogle ScholarPubMed
Mirkovitch, J., Mirault, M.-E. & Laemmli, U. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on a nuclear scaffold. Cell 39, 223–32.CrossRefGoogle ScholarPubMed
Phi-Van, L., von Thries, J.P., Ostertag, W. & Strätling, W.H. (1990). The chicken lyozyme 5' matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of heterologous genes Mol. Cell. Biol. 10 2302–7.Google Scholar
Pinkel, D., Strawne, T. & Gray, J.W. (1986). Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83, 329–39.CrossRefGoogle ScholarPubMed
Poccia, D. (1986). Remodelling of nucleoproteins during gametogenesis, fertilization and early development. Int. Rev. Cytol. 105, 165.CrossRefGoogle ScholarPubMed
Powell, D., Cran, D.G., Jennings, C. & Jones, R. (1990). Spatial organization of repetitive DNA sequences in the bovine sperm nucleus. J. Cell Sci. 97, 185–91.CrossRefGoogle ScholarPubMed
Powell, D., Cran, D.G., Jennings, C. & Jones, R. (1991). Spatial organization of the genome in the mammalian sperm nucleus. In Comparative Spermatology Twenty Years After, ed. Baccetti, B., pp.6771. Serono Symposium vol.75. New York: Raven Press.Google Scholar
Schöler, H.R., Hatzopoulos, A.K., Balling, R.S., Suzuki, N. &Grüss, P. (1989). A family of octamer-speciflc proteins present during mouse embryogenesis: evidence for germ-line specific expression of an Oct factor. EMBO J. 9. 2543–50.CrossRefGoogle Scholar
Schwarzacher, T., Leitch, A.R., Bennett, M.D. & HeslopHanson, J.S. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64, 315–24.CrossRefGoogle Scholar
Singer, R.H. & Ward, D.C. (1982). Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinylated nucleotide analog. Proc. Natl. Acad. Sci. USA 79, 7331–5.CrossRefGoogle Scholar
Ward, W.S. & Coffey, D.S. (1990). SpecifIc organization of genes in relation to the sperm nuclear matrix. Biochem. Biophys. Res. Commun. 173, 20–5.CrossRefGoogle Scholar
Ward, W.S., Partin, A.W. & Coffey, D.S. (1989). DNA loop domains in mammalian spermatozoa. Chromosoma (Berl.) 98, 153–9.CrossRefGoogle ScholarPubMed