Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T19:08:09.635Z Has data issue: false hasContentIssue false

Fertilization capacity of cryopreserved Iberian ibex epididymal sperm in a heterologous in vitro fertilization assay

Published online by Cambridge University Press:  29 November 2013

J. López-Saucedo
Affiliation:
Doctorado en Ciencias Biológicas y de la Salud de la Universidad Autónoma Metropolitana. 09340 Mexico City, Mexico.
J. Santiago-Moreno*
Affiliation:
Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain.
R. Fierro
Affiliation:
Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.
D. Izquierdo
Affiliation:
Departamento de Ciencia Animal y de los Alimentos, Facultad de Veterinaria, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
M.A. Coloma
Affiliation:
Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain.
M.G. Catalá
Affiliation:
Departamento de Ciencia Animal y de los Alimentos, Facultad de Veterinaria, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
I. Jiménez
Affiliation:
Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.
M.T. Paramio
Affiliation:
Departamento de Ciencia Animal y de los Alimentos, Facultad de Veterinaria, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
*
All correspondence to: J. Santiago-Moreno. 2Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain. Tel: +34 91 347 40 20. Fax: +34 91 347 40 14. e-mail address: [email protected]

Summary

In vitro fertilization (IVF) can be used to assess the fertilization capacity of sperm. Heterologous IVF may be useful when assessing that of wild animals as it is often difficult to obtain adequate numbers of naturally corresponding oocytes. The aim of the present study was to assess the fertilization capacity of frozen–thawed ibex epididymal spermatozoa via heterologous IVF involving the oocytes of prepubertal domestic goats. The effect on fertilization and embryo development of adding oestrous sheep serum (ESS) to the fertilization medium was also examined. Cumulus–oocyte complexes (COCs) were matured in TCM-199 for 24–27 h at 38.5°C in a 5% CO2 in air atmosphere. Frozen–thawed epididymal spermatozoa were selected by density gradient centrifugation. After maturation, the oocytes were co-incubated with spermatozoa in synthetic oviductal fluid (SOF) with different concentrations of ESS: SOF-C (0%), SOF-2 (2%) and SOF-20 (20%). At 17 h post-insemination (hpi), zygotes with one female and one male pronucleus (2PN) were categorised as normal; zygotes with 3PN were recorded as polyspermic, and oocytes with 1PN as asynchronous. Cleavage and blastocyst development were assessed at 48 and 168 hpi respectively. The percentage of zygotes with 2PN was higher in the SOF-2 than in the SOF-20 treatment group (27.7% versus 2.9% P < 0.05). The percentage of blastocysts formed with the SOF-C, SOF-2 and SOF-20 treatments were 1.1%, 7.5% and 0% respectively. These results show that the presence of 2% ESS achieves better results than the use of no serum or the standard 20% concentration. Heterologous IVF may be an effective method for predicting the fertilization capacity of ibex spermatozoa, and therefore perhaps that of other wild mountain ungulates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrabi, S. & Maxwell, W. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci. 99, 223–43.CrossRefGoogle ScholarPubMed
Anel, L., Alvarez, M., Anel, E., Martinez-Pastor, F., Martinez, F., Chamorro, C. & de Paz, P. (2011). Evaluation of three different extenders for use in emergency salvaging of epididymal spermatozoa from a Cantabric brown bear. Reprod. Domest. Anim. 46, e8590.CrossRefGoogle ScholarPubMed
Bailey, J.L., Robertson, L. & Buhr, M.M. (1994). Relations among in vivo fertility, computer-analysed motility and Ca++ influx in bovine spermatozoa. Can. J. Anim. Sci. 74, 53–8.Google Scholar
Batista, A.M., Silva, S.V., Soares, A.T., Monteiro, P.L.J., Wischral, A. & Guerra, M.M.P. (2011). Comparison of Capripure® and Percoll® density gradients for sperm separation of frozen–thawed goat spermatozoa. Anim. Prod. 8, 81–4.Google Scholar
Berlinguer, F., Ledda, S., Rosati, I., Bogliolo, L., Leoni, G. & Naitana, S. (2003). Superoxide dismutase affects the viability of thawed European mouflon (Ovis g. musimon) semen and the heterologous fertilization using both IVF and intracytoplasmatic sperm injection. Reprod. Fertil. Dev. 15, 1925.Google Scholar
Campbell, R.C., Dott, H.M. & Glover, T.D. (1956) Nigrosin eosin as a stain for differentiating live and dead spermatozoa. J. Agric. Sci. 48, 18.Google Scholar
Cocchia, N., Ciani, F., El-Rass, R., Russo, M., Borzacchiello, G., Esposito, V., Montagnaro, S., Avallone, L., Tortora, G. & Lorizio, R. (2010). Cryopreservation of feline epididymal spermatozoa from dead and alive animals and its use in assisted reproduction. Zygote 18, 18.Google Scholar
Coloma, M.A., Gómez-Brunet, A., Velázquez, R., Toledano-Díaz, A., López-Sebastián, A. & Santiago-Moreno, J. (2010). Freezability of Iberian ibex (Capra pyrenaica) spermatozoa according to the glycerolization temperature and plasma testosterone concentration. Cryobiology 61, 204–10.CrossRefGoogle Scholar
Coloma, M.A., Toledano-Díaz, A., Castaño, C., Velázquez, R., Gómez-Brunet, A., López-Sebastián, A. & Santiago-Moreno, J. (2011) Seasonal variation in reproductive physiological status in the Iberian ibex (Capra pyrenaica) and its relationship with sperm freezability. Theriogenology 76, 1695–705.CrossRefGoogle ScholarPubMed
Comizzoli, P., Mauget, R. & Mermillod, P. (2001). Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology 56, 261–74.Google Scholar
Cummins, J.M. (1995). Test of sperm function. In Gametes. The Spermatozoon. Cambridge Reviews in Human Reproduction. (eds Grudzinskas, J.G. & Yovich, J.L.), pp. 70103. Cambridge, UK: Cambridge University Press.Google Scholar
Durrant, B.S. (2009). The importance and potential of artificial insemination in CANDES (companion animals, non-domestic, endangered species). Theriogenology 71, 113–22.CrossRefGoogle ScholarPubMed
Fernández-Santos, M.R., Soler, A.J., Ramon, M., Ros-Santaella, J.L., Maroto-Morales, A., Garcia-Alvarez, O., Bisbal, A., Garde, J.J., Coloma, M.A. & Santiago-Moreno, J. (2011). Effect of post-mortem time on post-thaw characteristics of Spanish ibex (Capra pyrenaica) spermatozoa. Anim. Reprod. Sci. 129, 5666.CrossRefGoogle ScholarPubMed
García-Álvarez, O., Maroto-Morales, A., Martínez-Pastor, F., Fernandez-Santos, M., Esteso, M., Pérez-Guzmán, M. & Soler, A.J.. (2009). Heterologous in vitro fertilization is a good procedure to assess the fertility of thawed ram spermatozoa. Theriogenology 71, 643–50.CrossRefGoogle ScholarPubMed
Garner, D.L., Thomas, C.A., Allen, C.H., Senger, P.L. & Sasser, R.G. (1997). Effect of cryopreservation on bovine sperm viability as determined by dual DNA staining. Reprod. Domest. Anim. 32, 279–83.Google Scholar
Ghasemzadeh-Nava, H. & Tajik, P. (2000). In vitro maturation of ovine follicular oocytes in different concentrations of fetal calf serum and estrous sheep serum. Theriogenology 53, 453 (Abstr.).Google Scholar
Holt, W.V. (2009). Is semen analysis useful to predict the odds that the sperm will meet the egg? Reprod. Domest. Anim. 44, 31–8.Google Scholar
Huneau, D., Crozet, N. & Ahmed-Ali, M. (1994). Estrous sheep serum as a potent agent for ovine IVF: effect on cholesterol efflux from spermatozoa and the acrosome reaction. Theriogenology 42, 1017–28.CrossRefGoogle ScholarPubMed
Januskauskas, A., Johannisson, A. & Rodríguez-Martínez, H. (2003). Subtle membrane changes in cryopreserved bull semen in relation to sperm viability, chromatin structure and field fertility. Theriogenology 60, 743–58.Google Scholar
Jeyendran, R., Van Der Ven, H., Perez-Pelaez, M., Crabo, B. & Zaneveld, L. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relation to other semen characteristics. J. Reprod. Fertil. 70, 219–28.Google Scholar
Jiménez-Macedo, A.R., Izquierdo, D., Anguita, B. & Paramio, M.T. (2005). Comparison between intracytoplasmic sperm injection and in vitro fertilization employing oocytes derived from prepubertal goats. Theriogenology 64, 1249–62.Google Scholar
Keeley, T., McGreevy, P.D. & O'Brien, J.K. (2012). Cryopreservation of epididymal sperm collected postmortem in the Tasmanian devil (Sarcophilus harrisii). Theriogenology 78, 315–25.Google Scholar
Kjaestad, H., Ropstad, E. & Andersen Berg, K. (1993). Evaluation of spermatological parameters used to predict the fertility of frozen bull semen. Acta Vet. Scand. 34, 299303.Google Scholar
Maurel, M., Roy, F., Hervé, V., Bertin, J., Vaiman, D., Cribiu, E., Manfredi, E., Bouvier, F., Lantier, I., Boue, P. & Guillou, F. (2003). Immune response to equine chorionic gonadotropin used for the induction of ovulation in goats and ewes. Ginecol Obstet. Fertil. 31, 766–9.CrossRefGoogle ScholarPubMed
Mogas, T., Palomo, M., Izquierdo, M. & Paramio, M. (1997). Morphological events during in vitro fertilization of prepubertal goat oocytes matured in vitro. Theriogenology 48, 815–29.CrossRefGoogle ScholarPubMed
Mortimer, D. (1994). Sperm washing. In Practical Laboratory Andrology (ed. Mortimer, D.), pp. 267–86. New York: Oxford University Press Inc.Google Scholar
Oehninger, S. & Franken, D. (2006). Testing sperm manufacturing quality: the sperm–zona binding assay. In The Sperm Cell. Production, Maturation, Fertilization, Regeneration (eds De Jonge, C.J. & Barratt, C.L.), pp. 194216. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Pursel, V. & Johnson, L. (1974). Glutaraldehyde fixation of boar spermatozoa for acrosome evaluation. Theriogenology 1, 63–8.CrossRefGoogle ScholarPubMed
Rodríguez-Martínez, H. (2003). Laboratory semen assessment and prediction of fertility: still Utopia? Reprod. Domest. Anim. 38, 312–8.CrossRefGoogle ScholarPubMed
Rodríguez-Martínez, H. & Larsson, B. (1998). Assessment of sperm fertilizing ability in farm animals. Acta Agr. Scand. Sect. A Animal Sci. Suppl. 29, 12–8.Google Scholar
Romaguera, R., Casanovas, A., Morató, R., Izquierdo, D., Catalá, M., Jiménez-Macedo, A.R, Mogas, T. & Paramio, M.T. (2010). Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats. Theriogenology 74, 364–73.Google Scholar
Romaguera, R., Moll, X., Morató, R., Roura, M., Palomo, M., Catalá, M., Jiménez-Macedo, A.R., Hammami, S., Izquierdo, D., Mogas, T., Paramio, M.T. (2011). Prepubertal goat oocytes from large follicles result in similar blastocyst production and embryo ploidy than those from adult goats. Theriogenology 76, 111.CrossRefGoogle ScholarPubMed
Salamon, S., & Maxwell, W. (2000). Storage of ram semen. Anim. Reprod. Sci. 62, 77112.CrossRefGoogle ScholarPubMed
Santiago-Moreno, J., Toledano-Díaz, A., Pulido-Pastor, A., Gómez-Brunet, A. & López-Sebastián, A. (2006). Birth of live Spanish ibex (Capra pyrenaica hispanica) derived from artificial insemination with epididymal spermatozoa retrieved after death. Theriogenology 66, 283–91.Google Scholar
Santiago-Moreno, J., Toledano-Díaz, A., Dorado, J., Pulido-Pastor, A., Coloma, M.A. & López-Sebastian, A. (2007). Recovery and cryopreservation of Spanish ibex epididymal spermatozoa. Arch. Androl. 53, 309–16.Google Scholar
Santiago-Moreno, J., Coloma, M., Dorado, J., Pulido-Pastor, A., Gómez-Guillamon, F., Salas-Vegas, R., Gómez-Brunet, A. & López-Sebastián, A. (2009a). Cryopreservation of Spanish ibex (Capra pyrenaica) sperm obtained by electroejaculation outside the rutting season. Theriogenology 71, 1253–60.CrossRefGoogle ScholarPubMed
Santiago-Moreno, J., Astorga, R.J., Luque, I., Coloma, M.A., Toledano-Díaz, A., Pulido-Pastor, A., Gómez-Guillamon, F., Salas-Vega, R. & López-Sebastián, A. (2009b). Influence of recovery method and microbial contamination on the response to freezing-thawing in ibex (Capra pyrenaica) epididymal spermatozoa. Cryobiology 59, 357–62.Google Scholar
Santiago-Moreno, J., Coloma, M., Toledano-Díaz, A., Castaño, C., Gómez-Brunet, A., López-Sebastián, A. (2010). Assisted reproduction in Mediterranean wild ruminants: lessons from the Spanish ibex (Capra pyrenaica). Soc. Reprod. Fertil. Suppl. 67, 431–41.Google Scholar
Santiago-Moreno, J., Castaño, C., Toledano-Díaz, A., Esteso, M.C., López-Sebastián, A., Guerra, R., Ruiz, M.J., Mendoza, N., Luna, C., Cebrián-Pérez, J.A. & Hildebrandt, T.B. (2013) Cryopreservation of aoudad (Ammotragus lervia sahariensis) sperm obtained by transrectal ultrasound-guided massage of the accessory sex glands and electroejaculation. Theriogenology 79, 383–91.CrossRefGoogle ScholarPubMed
Smith, M.C, & Sherman, D.M. (eds) (2009). Goat Medicine, 2nd edn.Iowa, USA: Wiley-Blackwell.CrossRefGoogle Scholar
Soler, A.J., & Garde, J.J. (2003). Relationship between the characteristics of epididymal red deer spermatozoa and penetrability into zona-free hamster ova. J. Androl. 24, 393400.CrossRefGoogle Scholar
Soler, A.J., Pérez-Guzmán, M.D. & Garde, J.J. (2003). Storage of red deer epididymides for four days at 5ºC: effects on sperm motility, viability, and morphological integrity. J. Exp. Zool. 295A, 188–99.Google Scholar
Soler, A.J., Esteso, M.C., Fernández-Santos, M.R. & Garde, J.J. (2005). Characteristics of Iberian red deer (Cervus elaphus hispanicus) spermatozoa cryopreserved after storage at 5ºC in the epididymis for several days. Theriogenology 64, 1503–17.CrossRefGoogle Scholar
Soler, A., Poulin, N., Fernández-Santos, M., Cognie, Y., Esteso, M., Gardé, J.J. & Mermillod, P. (2008). Heterologous in vitro fertility evaluation of cryopreserved Iberian red deer epididymal spermatozoa with zona intact sheep oocytes and its relationship with the characteristics of thawed spermatozoa. Reprod. Domest. Anim. 43, 293–98.CrossRefGoogle Scholar
Tibary, A., Anouassi, A. & Khatir, H. (2005). Update on reproductive biotechnologies in small ruminants and camelids. Theriogenology 64, 618–38.Google Scholar
Velilla, E., Izquierdo, D., Rodríguez-González, E., López-Béjar, M., Vidal, F. & Paramio, M. (2004). Distribution of prepubertal and adult goat oocyte cortical granules during meiotic maturation and fertilization: ultrastructural and cytochemical study. Mol. Reprod. Dev. 8, 507–14.Google Scholar
Watson, P.F & Holt, W.V. (eds) (2001) Cryobanking the Genetic Resource. London: Taylor and Francis.Google Scholar