Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T16:09:35.206Z Has data issue: false hasContentIssue false

Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum

Published online by Cambridge University Press:  15 November 2013

Rodrigo Fernández-Bussy
Affiliation:
Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET CCT-Rosario, Ocampo y Esmeralda, S2000EZP Rosario, ARGENTINA. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2000EZP Rosario, Argentina.
Valeria Mouguelar
Affiliation:
Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET CCT-Rosario, Ocampo y Esmeralda, S2000EZP Rosario, ARGENTINA. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2000EZP Rosario, Argentina.
Claudia Banchio
Affiliation:
Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET CCT-Rosario, Ocampo y Esmeralda, S2000EZP Rosario, ARGENTINA. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2000EZP Rosario, Argentina.
Gabriela Coux*
Affiliation:
Instituto de Biología Molecular y Celular de Rosario, Predio CONICET CCT-Rosario, Ocampo y Esmeralda, S2000EZP Rosario, ARGENTINA. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2000EZP Rosario, Argentina.
*
All correspondence to Gabriela Coux. Instituto de Biología Molecular y Celular de Rosario, Predio CONICET CCT-Rosario, Ocampo y Esmeralda, S2000EZP Rosario, ARGENTINA. Fax: +54 341 4390465. e-mail: [email protected]

Summary

In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, T.S., Bonini de Romanelli, I.C. & Bazan, N.G. (1982a). Membrane lipids composition and metabolism during early embryonic development. Phospholipid subcellular distribution and 32P labeling. Biochim. Biophys. Acta 688, 145–51.CrossRefGoogle Scholar
Alonso, T.S., Bonini de Romanelli, I.C., Pechen de D’Angelo, A.M. & Bazan, N.G. (1982b). Dynamics of cellular membranes during amphibian fertilization and early development. Prog. Clin. Biol. Res. Pt. B 112, 5562.Google ScholarPubMed
Arnold, R.S., DePaoli-Roach, A.A. & Cornell, R.B. (1997). Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 36, 6149–56.Google Scholar
Attard, G.S., Templer, R.H., Smith, W.S., Hunt, A.N. & Jackowski, S. (2000). Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA 97, 9032–6.Google Scholar
Barassi, C.A. & Bazan, N.G. (1974). Fatty acid distribution in lipids and 32P incorporation into phospholipids during early amphibian development. Lipids 9, 2734.CrossRefGoogle ScholarPubMed
Christie, W.W. (2003). Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd edn.Bridgwater, UK: The Oily Press.Google Scholar
Cornell, R.B. & Northwood, I.C. (2000). Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem. Sci. 25, 441–7.CrossRefGoogle ScholarPubMed
Cornell, R.B. & Taneva, S.G. (2006). Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7, 539–52.CrossRefGoogle ScholarPubMed
Davies, S.M., Epand, R.M., Kraayenhof, R. & Cornell, R.B. (2001). Regulation of CTP:phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry 40, 10522–31.Google Scholar
Del Conte, E. & Sirlin, J.L. (1952). Pattern series of the first embryonary stages in Bufo arenarum. Anat. Rec. 112, 125–35.CrossRefGoogle ScholarPubMed
Gilbert, S.F. (2000). Developmental Biology, 6th edn.Sunderland, MA, USA: Sinauer Associates.Google Scholar
Higgins, D.G., Thompson, J.D. & Gibson, T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods in Enzymology 266, 383402.Google Scholar
Iverson, S.J., Lang, S.L. & Cooper, M.H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36, 1283–7.CrossRefGoogle Scholar
Jackowski, S. (1994). Coordination of membrane phospholipid synthesis with the cell cycle. J. Biol. Chem. 269, 3858–67.Google Scholar
Jackowski, S. & Fagone, P. (2005). CTP:phosphocholine cytidylyltransferase: paving the way from gene to membrane. J. Biol. Chem. 280, 853–6.Google Scholar
Jackowski, S., Rehg, J.E., Zhang, Y.M., Wang, J., Miller, K., Jackson, P. & Karim, M.A. (2004). Disruption of CCTbeta2 expression leads to gonadal dysfunction. Mol. Cell Biol. 24, 4720–33.Google Scholar
Jorgensen, P., Steen, J.A., Steen, H. & Kirschner, M.W. (2009). The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development 136, 1539–48.Google Scholar
Karasaki, S. (1963). Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J. Ultrastruct. Res. 9, 225–47.CrossRefGoogle Scholar
Kent, C. (1997). CTP:phosphocholine cytidylyltransferase. Biochim. Biophys. Acta 1348, 7990.Google Scholar
Komazaki, S., Tanaka, N. & Nakamura, H. (2002). Regional differences in yolk platelet degradation activity and in types of yolk platelets degraded during early amphibian embryogenesis. Cells Tissues Organs 172, 1320.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Marcucci, H., Paoletti, L., Jackowski, S. & Banchio, C. (2010). Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J. Biol. Chem. 285, 25382–93.CrossRefGoogle ScholarPubMed
Mes-Hartree, M. & Armstrong, J.B. (1976). Lipid composition of developing Xenopus laevis embryos. Can. J. Biochem. 54, 578–82.Google Scholar
Mes-Hartree, M. & Armstrong, J.B. (1980). Lipid metabolism during embryonic and early postembryonic development of Xenopus laevis. Can. J. Biochem. 58, 559–64.CrossRefGoogle ScholarPubMed
Newport, J. & Kirschner, M. (1982). A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–96.CrossRefGoogle Scholar
Petcoff, D.W., Holland, W.L. & Stith, B.J. (2008). Lipid levels in sperm, eggs, and during fertilization in Xenopus laevis. J. Lipid Res. 49, 2365–78.Google Scholar
Pratt, H.P. (1980). Phospholipid synthesis in the preimplantation mouse embryo. J. Reprod. Fertil. 58, 237–48.Google Scholar
Rusiñol, A., Salomon, R.A. & Bloj, B. (1987). Phospholipid transfer activities in toad oocytes and developing embryos. J. Lipid Res. 28, 100–7.CrossRefGoogle ScholarPubMed
Sato, K., Iwao, Y., Fujimura, T., Tamaki, I., Ogawa, K., Iwasaki, T., Tokmakov, A.A., Hatano, O. & Fukami, Y. (1999). Evidence for the involvement of a Src-related tyrosine kinase in Xenopus egg activation. Dev. Biol. 209, 308–20.Google Scholar
Sedmak, J.J. & Grossberg, S.E. (1977). A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 79, 544–52.CrossRefGoogle ScholarPubMed
Sugimoto, H., Banchio, C. & Vance, D.E. (2008). Transcriptional regulation of phosphatidylcholine biosynthesis. Prog. Lipid Res. 47, 204–20.Google Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4.Google Scholar
Vance, J.E. & Vance, D.E. (2004). Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 82, 113–28.CrossRefGoogle ScholarPubMed
Wang, L., Magdaleno, S., Tabas, I. & Jackowski, S. (2005). Early embryonic lethality in mice with targeted deletion of the CTP:phosphocholine cytidylyltransferase alpha gene (Pcyt1a). Mol. Cell Biol. 25, 3357–63.Google Scholar
Wu, G., Aoyama, C., Young, S.G. & Vance, D.E. (2008). Early embryonic lethality caused by disruption of the gene for choline kinase alpha, the first enzyme in phosphatidylcholine biosynthesis. J. Biol. Chem. 283, 1456–62.Google Scholar