Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T15:28:17.093Z Has data issue: false hasContentIssue false

Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos

Published online by Cambridge University Press:  11 October 2011

W.S. Abd El Naby
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
T.H. Hagos
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
M.M. Hossain
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
D. Salilew-Wondim
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
A.Y. Gad
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
F. Rings
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
M.U. Cinar
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
E. Tholen
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
C. Looft
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
K. Schellander
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
M. Hoelker
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Germany.
D. Tesfaye*
Affiliation:
Institute of Animal Science, Department of Animal Breeding and Husbandry, Endenicher Allee 15, 53115 Bonn, Germany.
*
All correspondence to: Dawit Tesfaye. Institute of Animal Science, Department of Animal Breeding and Husbandry, Endenicher Allee 15, 53115 Bonn, Germany. Tel: +49 228 732286. Fax: +49 228 732284. e-mail: [email protected]

Summary

MicroRNAs (miRNAs) are small endogenous molecules that are involved in a diverse of cellular process. However, little is known about their abundance in bovine oocytes and their surrounding cumulus cells during oocyte development. To elucidate this situation, we investigated the relative expression pattern of sets of miRNAs between bovine oocyte and the surrounding cumulus cells during in vitro maturation using miRNA polymerase chain reaction (PCR) array. Results revealed that a total of 47 and 51 miRNAs were highly abundant in immature and matured oocytes, respectively, compared with their surrounding cumulus cells. Furthermore, expression analysis of six miRNAs enriched in oocyte miR-205, miR-150, miR-122, miR-96, miR-146a and miR-146b-5p at different maturation times showed a dramatic decrease in abundance from 0 h to 22 h of maturation. The expression of the same miRNAs in preimplantation stage embryos was found to be highly abundant in early stages of embryo development and decreased after the 8-cell stage to the blastocyst stage following a typical maternal transcript profile. Similar results were obtained by localization of miR-205 in preimplantation stage embryos, in which signals were higher up to the 4-cell stage and reduced thereafter. miR-205 and miR-210 were localized in situ in ovarian follicles and revealed a spatio-temporal expression during follicular development. Interestingly, the presence or absence of oocytes or cumulus cells during maturation was found to affect the expression of miRNAs in each of the two cell types. Hence, our results showed the presence of distinct sets of miRNAs in oocytes or cumulus cells and the presence of their dynamic degradation during bovine oocyte maturation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assidi, M., Dufort, I., Ali, A., Hamel, M., Algriany, O., Dielemann, S. & Sirard, M.A. (2008). Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–22.CrossRefGoogle ScholarPubMed
Avazeri, N. & Lefevre, B. (1998). Phospholipase Cβ1, the PLC isoform present at the nuclear level, regulates the IP3-dependent Ca2+ oscillations responsible for mouse oocyte germinal vesicle breakdown. Biol. Cell 90, 125.CrossRefGoogle Scholar
Avazeri, N., Courtot, A.M., Pesty, A., Duquenne, C. & Lefevre, B. (2000). Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol. Biol. Cell 11, 4369–80.CrossRefGoogle ScholarPubMed
Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85.CrossRefGoogle ScholarPubMed
Buccione, R., Schroeder, A.C. & Eppig, J.J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–7.CrossRefGoogle ScholarPubMed
Carletti, M.Z. & Christenson, L.K. (2009). MicroRNA in the ovary and female reproductive tract. J. Anim. Sci. 87, E2938.CrossRefGoogle ScholarPubMed
Creighton, C.J., Benham, A.L., Zhu, H., Khan, M.F., Reid, J.G., Nagaraja, A.K., Fountain, M.D., Dziadek, O., Han, D., Ma, L., Kim, J., Hawkins, S.M., Anderson, M.L., Matzuk, M.M. & Gunaratne, P.H. (2010). Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 5, e9637.CrossRefGoogle ScholarPubMed
Dalbies-Tran, R. & Mermillod, P. (2003). Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod. 68, 252–61.CrossRefGoogle ScholarPubMed
De La Fuente, R. (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 292, 112.CrossRefGoogle ScholarPubMed
El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M. A., Schellander, K. & Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 8496.CrossRefGoogle ScholarPubMed
Eppig, J.J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–74.CrossRefGoogle ScholarPubMed
Fair, T., Carter, F., Park, S., Evans, A.C. & Lonergan, P. (2007). Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology 68(Suppl 1), S917.CrossRefGoogle ScholarPubMed
Fatehi, A.N., Zeinstra, E.C., Kooij, R.V., Colenbrander, B. & Bevers, M.M. (2002). Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57, 1347–55.CrossRefGoogle ScholarPubMed
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2001). Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev. Biol. 240, 289–98.CrossRefGoogle ScholarPubMed
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–46.CrossRefGoogle Scholar
Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J. & Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–9.CrossRefGoogle ScholarPubMed
Goud, P.T., Goud, A.P., Van Oostveldt, P. & Dhont, M. (1999). Presence and dynamic redistribution of type I inositol 1,4,5-trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions. Mol. Hum. Reprod. 5, 441451.CrossRefGoogle ScholarPubMed
Grazul-Bilska, A.T., Reynolds, L.P. & Redmer, D.A. (1997). Gap junctions in the ovaries. Biol. Reprod. 57, 947–57.CrossRefGoogle ScholarPubMed
Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D1404.CrossRefGoogle ScholarPubMed
Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. & Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91105.CrossRefGoogle ScholarPubMed
Hamel, M., Dufort, I., Robert, C., Gravel, C., Leveille, M.C., Leader, A. & Sirard, M.A. (2008). Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 23, 1118–27.CrossRefGoogle ScholarPubMed
Hong, X., Luense, L.J., McGinnis, L.K., Nothnick, W.B. & Christenson, L.K. (2008). Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 149, 6207–12.CrossRefGoogle ScholarPubMed
Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–6.CrossRefGoogle ScholarPubMed
Hussein, T.S., Thompson, J.G. & Gilchrist, R.B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–21.CrossRefGoogle ScholarPubMed
Jeong, K.H. & Kaiser, U.B. (2006). Gonadotropin-releasing hormone regulation of gonadotropin biosynthesis and secretion. In Knobil & Neill's Physiology of Reproduction (ed. Neill, J.D.), pp. 1635–726. Amsterdam: Elsevier.CrossRefGoogle Scholar
Kraus, S., Naor, Z. & Seger, R. (2001). Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Arch. Med. Res. 32, 499509.CrossRefGoogle ScholarPubMed
Liu, H.C., Tang, Y., He, Z. & Rosenwaks, Z. (2010). Dicer is a key player in oocyte maturation. J. Assist. Reprod. Genet. 27, 571–80.CrossRefGoogle ScholarPubMed
Liu, Z.H., Zhang, H., He, Y.P., Zhang, J.H. & Yue, L.M. (2006). [Cyclin G1 expressing in mouse ovary and relating to follicular development]. Sichuan Da Xue Xue Bao Yi Xue Ban 37, 893–7.Google ScholarPubMed
Lykke-Andersen, K., Gilchrist, M.J., Grabarek, J.B., Das, P., Miska, E. & Zernicka-Goetz, M. (2008). Maternal argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol. Biol. Cell 19, 4383–92.CrossRefGoogle ScholarPubMed
Matzuk, M.M., Burns, K.H., Viveiros, M.M. & Eppig, J.J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–80.CrossRefGoogle ScholarPubMed
McArdle, C.A., Franklin, J., Green, L. & Hislop, J.N. (2002). Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors. J. Endocrinol. 173, 111.CrossRefGoogle ScholarPubMed
Memili, E. & First, N.L. (1999). Control of gene expression at the onset of bovine embryonic development. Biol. Reprod. 61, 1198–207.CrossRefGoogle ScholarPubMed
Memili, E., Peddinti, D., Shack, L.A., Nanduri, B., McCarthy, F., Sagirkaya, H. & Burgess, S.C. (2007). Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction 133, 1107–20.CrossRefGoogle ScholarPubMed
Miller, R.P. (2006). Gonadotrophin-releasing horrmone. In Handbook of Biologically Active Peptides (ed. Kastin, A.J.), pp. 637–44. USA: Acadamic Press.Google Scholar
Miyazaki, S., Yuzaki, M., Nakada, K., Shirakawa, H., Nakanishi, S., Nakade, S. & Mikoshiba, K. (1992). Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science 257, 251–5.CrossRefGoogle Scholar
Mori, T., Amano, T. & Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–9.CrossRefGoogle ScholarPubMed
Murchison, E.P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R.M. & Hannon, G.J. (2007). Critical roles for Dicer in the female germline. Genes Dev. 21, 682–93.CrossRefGoogle ScholarPubMed
Nagaraja, A.K., Andreu-Vieyra, C., Franco, H.L., Ma, L., Chen, R., Han, D.Y., Zhu, H., Agno, J.E., Gunaratne, P.H., DeMayo, F.J. & Matzuk, M.M. (2008). Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol. Endocrinol. 22, 2336–52.CrossRefGoogle ScholarPubMed
Niwa, R. & Slack, F.J. (2007). The evolution of animal microRNA function. Curr. Opin. Genet. Dev. 17, 145–50.CrossRefGoogle ScholarPubMed
Obernosterer, G., Martinez, J. & Alenius, M. (2007). Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protoc. 2, 1508–14.CrossRefGoogle ScholarPubMed
Otsuka, M., Zheng, M., Hayashi, M., Lee, J.D., Yoshino, O., Lin, S. & Han, J. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J. Clin. Invest. 118, 1944–54.CrossRefGoogle ScholarPubMed
Peddinti, D., Memili, E. & Burgess, S.C. (2010). Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction. PLoS One 5, e11240.CrossRefGoogle ScholarPubMed
Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E. & Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–6.CrossRefGoogle ScholarPubMed
Plasterk, R.H. (2006). MicroRNAs in animal development. Cell 124, 877–81.CrossRefGoogle ScholarPubMed
Robert, C., Gagne, D., Bousquet, D., Barnes, F.L. & Sirard, M.A. (2001). Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence. Biol. Reprod. 64, 1812–20.CrossRefGoogle ScholarPubMed
Rosenkrans, C.F., Jr. & First, N.L. (1994). Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J. Anim. Sci. 72, 434–7.CrossRefGoogle ScholarPubMed
Roy, A. & Matzuk, M.M. (2006). Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 131, 207219.CrossRefGoogle ScholarPubMed
Runft, L.L., Watras, J. & Jaffe, L.A. (1999). Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Dev. Biol. 214, 399411.CrossRefGoogle ScholarPubMed
Su, Y.Q., Sugiura, K., Woo, Y., Wigglesworth, K., Kamdar, S., Affourtit, J. & Eppig, J.J. (2007). Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev. Biol. 302, 104–17.CrossRefGoogle ScholarPubMed
Sugiura, K., Pendola, F.L. & Eppig, J.J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 2030.CrossRefGoogle ScholarPubMed
Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R.M. & Hannon, G.J. (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–8.CrossRefGoogle ScholarPubMed
Tang, F., Kaneda, M., O'Carroll, D., Hajkova, P., Barton, S.C., Sun, Y.A., Lee, C., Tarakhovsky, A., Lao, K. & Surani, M.A. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–8.CrossRefGoogle ScholarPubMed
Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. & de Kruif, A. (2002). Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–24.CrossRefGoogle ScholarPubMed
Telford, N.A., Watson, A.J. & Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90100.CrossRefGoogle ScholarPubMed
Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K. & Hoelker, M. (2009). Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 76, 665–77.CrossRefGoogle ScholarPubMed
Tomek, W., Torner, H. & Kanitz, W. (2002). Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro. Reprod. Domest. Anim. 37, 8691.CrossRefGoogle ScholarPubMed
Vallee, M., Gravel, C., Palin, M.F., Reghenas, H., Stothard, P., Wishart, D.S. & Sirard, M.A. (2005). Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod. 73, 6371.CrossRefGoogle ScholarPubMed
Vozzi, C., Formenton, A., Chanson, A., Senn, A., Sahli, R., Shaw, P., Nicod, P., Germond, M. & Haefliger, J.A. (2001). Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction 122, 619–28.CrossRefGoogle ScholarPubMed
Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki, Y. & Sasaki, H. (2008). Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–43.CrossRefGoogle ScholarPubMed
Wongsrikeao, P., Kaneshige, Y., Ooki, R., Taniguchi, M., Agung, B., Nii, M. & Otoi, T. (2005). Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Domest. Anim. 40, 166–70.CrossRefGoogle ScholarPubMed
Xu, Z., Kopf, G.S. & Schultz, R.M. (1994). Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development 120, 1851–9.CrossRefGoogle ScholarPubMed
Zhang, L., Jiang, S., Wozniak, P.J., Yang, X. & Godke, R.A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–44.CrossRefGoogle ScholarPubMed