Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T13:55:13.802Z Has data issue: false hasContentIssue false

Exosc10 deficiency in the initial segment is dispensable for sperm maturation and male fertility in mice

Published online by Cambridge University Press:  18 November 2024

Meiyang Zhou
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Junjie Yu
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Yu Xu
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Hong Li
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Yan-Qin Feng
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Xiao Wang
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Fanyi Qiu
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Nana Li*
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
Zhengpin Wang*
Affiliation:
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, PR China
*
Corresponding author: Zhengpin Wang; Email: [email protected] or Nana Li; Email: [email protected]
Corresponding author: Zhengpin Wang; Email: [email protected] or Nana Li; Email: [email protected]

Summary

EXOSC10 is an exosome-associated ribonuclease that degrades and processes a wide range of transcripts in the nucleus. The initial segment (IS) of the epididymis is crucial for sperm transport and maturation in mice by affecting the absorption and secretion that is required for male fertility. However, the role of EXOSC10 ribonuclease-mediated RNA metabolism within the IS in the regulation of gene expression and sperm maturation remains unknown. Herein, we established an Exosc10 conditional knockout (Exosc10 cKO) mouse model by crossing Exosc10F/F mice with Lcn9-Cre mice which expressed recombinase in the principal cells of IS as early as post-natal day 17. Morphological and histological analyses revealed that Exosc10 cKO males had normal spermatogenesis and development of IS. Moreover, the sperm concentration, morphology, motility, and frequency of acrosome reactions in the cauda epididymides of Exosc10 cKO mice were comparable with those of control mice. Thus, Exosc10 cKO males had normal fertility. Collectively, our genetic mouse model and findings demonstrate that loss of EXOSC10 in the IS of epididymis is dispensable for sperm maturation and male fertility.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

#

These authors contributed equally to this work

References

Bjorkgren, I, Saastamoinen, L, Krutskikh, A, Huhtaniemi, I, Poutanen, M and Sipila, P (2012) Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One 7(6), e38457. https://doi.org/10.1371/journal.pone.0038457.CrossRefGoogle ScholarPubMed
Cornwall, GA (2009) New insights into epididymal biology and function. Human Reproduction Update 15(2), 213227. https://doi.org/10.1093/humupd/dmn055.CrossRefGoogle ScholarPubMed
Cosentino, MJ and Cockett, AT (1986) Structure and function of the epididymis. Urological Research 14(5), 229240. https://doi.org/10.1007/BF00256565.CrossRefGoogle ScholarPubMed
Demini, L, Kervarrec, C, Guillot, L, Com, E, Lavigne, R, Kernanec, PY, Primig, M, Pineau, C, Petit, FG and Jamin, SP (2023) Inactivation of Exosc10 in the oocyte impairs oocyte development and maturation, leading to a depletion of the ovarian reserve in mice. International Journal of Biological Sciences 19(4), 10801093. https://doi.org/10.7150/ijbs.72889.CrossRefGoogle ScholarPubMed
Dube, E, Chan, PT, Hermo, L and Cyr, DG (2007) Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biology of Reproduction 76(6), 10341044. https://doi.org/10.1095/biolreprod.106.059246.CrossRefGoogle Scholar
Elbashir, S, Magdi, Y, Rashed, A, Henkel, R and Agarwal, A (2021) Epididymal contribution to male infertility: An overlooked problem. Andrologia 53(1), e13721. https://doi.org/10.1111/and.13721.CrossRefGoogle ScholarPubMed
Gannon, AL, Darbey, AL, Chensee, G, Lawrence, BM, O’Donnell, L, Kelso, J, Reed, N, Parameswaran, S, Smith, S, Smith, LB and Rebourcet, D (2022) A novel model using AAV9-Cre to knockout adult leydig cell gene expression reveals a physiological role of glucocorticoid receptor signalling in leydig cell function. International Journal of Molecular Sciences 23(23), 15015. https://doi.org/10.3390/ijms232315015.CrossRefGoogle ScholarPubMed
Gong, QQ, Wang, X, Dou, ZL, Zhang, KY, Liu, XG, Gao, JG and Sun, XY (2021) A novel mouse line with epididymal initial segment-specific expression of Cre recombinase driven by the endogenous Lcn9 promoter. PLoS One 16(7), e0254802. https://doi.org/10.1371/journal.pone.0254802.CrossRefGoogle ScholarPubMed
Hartley, JL, Zachos, NC, Dawood, B, Donowitz, M, Forman, J, Pollitt, RJ, Morgan, NV, Tee, L, Gissen, P, Kahr, WH, Knisely, AS, Watson, S, Chitayat, D, Booth, IW, Protheroe, S, Murphy, S, de Vries, E, Kelly, DA and Maher, ER (2010) Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 138(7), 23882398, 2398.e2381-2382. https://doi.org/10.1053/j.gastro.2010.02.010.CrossRefGoogle ScholarPubMed
Hoshii, T, Takeo, T, Nakagata, N, Takeya, M, Araki, K and Yamamura, K (2007) LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biology of Reproduction 76(2), 303313. https://doi.org/10.1095/biolreprod.106.054619.CrossRefGoogle ScholarPubMed
Huang, Y, Li, X, Sun, X, Yao, J, Gao, F, Wang, Z, Hu, J, Wang, Z, Ouyang, B, Tu, X, Zou, X, Liu, W, Lu, M, Deng, C, Yang, Q and Xie, Y (2021) Anatomical transcriptome atlas of the male mouse reproductive system during aging. Frontiers in Cell and Developmental Biology 9, 782824. https://doi.org/10.3389/fcell.2021.782824.CrossRefGoogle ScholarPubMed
James, ER, Carrell, DT, Aston, KI, Jenkins, TG, Yeste, M and Salas-Huetos, A (2020) The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. International Journal of Molecular Sciences 21(15), 5377. https://doi.org/10.3390/ijms21155377.CrossRefGoogle ScholarPubMed
Jamin, SP, Petit, FG, Kervarrec, C, Smagulova, F, Illner, D, Scherthan, H and Primig, M (2017) EXOSC10/Rrp6 is post-translationally regulated in male germ cells and controls the onset of spermatogenesis. Scientific Reports 7(1), 15065. https://doi.org/10.1038/s41598-017-14643-y.CrossRefGoogle ScholarPubMed
Johnston, DS, Jelinsky, SA, Bang, HJ, DiCandeloro, P, Wilson, E, Kopf, GS and Turner, TT (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biology of Reproduction 73(3), 404413. https://doi.org/10.1095/biolreprod.105.039719.CrossRefGoogle ScholarPubMed
Joseph, A, Shur, BD and Hess, RA (2011) Estrogen, efferent ductules, and the epididymis. Biology of Reproduction 84(2), 207217. https://doi.org/10.1095/biolreprod.110.087353.CrossRefGoogle ScholarPubMed
Kiyozumi, D, Noda, T, Yamaguchi, R, Tobita, T, Matsumura, T, Shimada, K, Kodani, M, Kohda, T, Fujihara, Y, Ozawa, M, Yu, Z, Miklossy, G, Bohren, KM, Horie, M, Okabe, M, Matzuk, MM and Ikawa, M (2020) NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science 368(6495), 11321135. https://doi.org/10.1126/science.aay5134.CrossRefGoogle ScholarPubMed
Knight, JR, Bastide, A, Peretti, D, Roobol, A, Roobol, J, Mallucci, GR, Smales, CM and Willis, AE (2016) Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis. RNA 22(4), 623635. https://doi.org/10.1261/rna.054411.115.CrossRefGoogle ScholarPubMed
Krutskikh, A, De Gendt, K, Sharp, V, Verhoeven, G, Poutanen, M and Huhtaniemi, I (2011) Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 152(2), 689696. https://doi.org/10.1210/en.2010-0768.CrossRefGoogle ScholarPubMed
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4), 402408. https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle ScholarPubMed
Markey, CM and Meyer, GT (1992) A quantitative description of the epididymis and its microvasculature: an age-related study in the rat. Journal of Anatomy 180 (Pt 2)(Pt 2), 255262.Google ScholarPubMed
Martinez-Garcia, F, Regadera, J, Cobo, P, Palacios, J, Paniagua, R and Nistal, M (1995) The apical mitochondria-rich cells of the mammalian epididymis. Andrologia 27(4), 195206. https://doi.org/10.1111/j.1439-0272.1995.tb01093.x.CrossRefGoogle ScholarPubMed
Mendive, F, Laurent, P, Van Schoore, G, Skarnes, W, Pochet, R and Vassart, G (2006) Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Developmental Biology 290(2), 421434. https://doi.org/10.1016/j.ydbio.2005.11.043.CrossRefGoogle ScholarPubMed
Murashima, A, Miyagawa, S, Ogino, Y, Nishida-Fukuda, H, Araki, K, Matsumoto, T, Kaneko, T, Yoshinaga, K, Yamamura, K, Kurita, T, Kato, S, Moon, AM and Yamada, G (2011) Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 152(4), 16401651. https://doi.org/10.1210/en.2010-1121.CrossRefGoogle ScholarPubMed
O’Hara, L, Welsh, M, Saunders, PT and Smith, LB (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152(2), 718729. https://doi.org/10.1210/en.2010-0928.CrossRefGoogle ScholarPubMed
Pefanis, E, Wang, J, Rothschild, G, Lim, J, Kazadi, D, Sun, J, Federation, A, Chao, J, Elliott, O, Liu, ZP, Economides, AN, Bradner, JE, Rabadan, R and Basu, U (2015) RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161(4), 774789. https://doi.org/10.1016/j.cell.2015.04.034.CrossRefGoogle ScholarPubMed
Petit, FG, Jamin, SP, Kernanec, PY, Becker, E, Halet, G and Primig, M (2022) EXOSC10/Rrp6 is essential for the eight-cell embryo/morula transition. Developmental Biology 483, 5865. https://doi.org/10.1016/j.ydbio.2021.12.010.CrossRefGoogle ScholarPubMed
Rudnik-Schöneborn, S, Senderek, J, Jen, JC, Houge, G, Seeman, P, Puchmajerová, A, Graul-Neumann, L, Seidel, U, Korinthenberg, R, Kirschner, J, Seeger, J, Ryan, MM, Muntoni, F, Steinlin, M, Sztriha, L, Colomer, J, Hübner, C, Brockmann, K, Van Maldergem, L, Schiff, M, Holzinger, A, Barth, P, Reardon, W, Yourshaw, M, Nelson, SF, Eggermann, T and Zerres, K (2013) Pontocerebellar hypoplasia type 1: clinical spectrum and relevance of EXOSC3 mutations. Neurology 80(5), 438446. https://doi.org/10.1212/WNL.0b013e31827f0f66.CrossRefGoogle ScholarPubMed
Sipila, P, Cooper, TG, Yeung, CH, Mustonen, M, Penttinen, J, Drevet, J, Huhtaniemi, I and Poutanen, M (2002) Epididymal dysfunction initiated by the expression of simian virus 40 T-antigen leads to angulated sperm flagella and infertility in transgenic mice. Molecular Endocrinology 16(11), 26032617. https://doi.org/10.1210/me.2002-0100.CrossRefGoogle ScholarPubMed
Sonnenberg-Riethmacher, E, Walter, B, Riethmacher, D, Godecke, S and Birchmeier, C (1996) The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes & Development 10(10), 11841193. https://doi.org/10.1101/gad.10.10.1184.CrossRefGoogle ScholarPubMed
Sullivan, R, Legare, C, Lamontagne-Proulx, J, Breton, S and Soulet, D (2019) Revisiting structure/functions of the human epididymis. Andrology 7(5), 748757. https://doi.org/10.1111/andr.12633.CrossRefGoogle ScholarPubMed
Thimon, V, Koukoui, O, Calvo, E and Sullivan, R (2007) Region-specific gene expression profiling along the human epididymis. Molecular Human Reproduction 13(10), 691704. https://doi.org/10.1093/molehr/gam051.CrossRefGoogle ScholarPubMed
van Dijk, EL, Schilders, G and Pruijn, GJ (2007) Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA 13(7), 10271035. https://doi.org/10.1261/rna.575107.CrossRefGoogle ScholarPubMed
Weißbach, S, Langer, C, Puppe, B, Nedeva, T, Bach, E, Kull, M, Bargou, R, Einsele, H, Rosenwald, A, Knop, S and Leich, E (2015) The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. British Journal of Haematology 169(1), 5770. https://doi.org/10.1111/bjh.13256.CrossRefGoogle ScholarPubMed
Wu, D and Dean, J (2020) EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes. Nucleic Acids Research 48(10), 53495365. https://doi.org/10.1093/nar/gkaa249.CrossRefGoogle ScholarPubMed
Zhou, W, De Iuliis, GN, Dun, MD and Nixon, B (2018) Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Frontiers in Endocrinology 9, 59. https://doi.org/10.3389/fendo.2018.00059.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhou et al. supplementary material

Zhou et al. supplementary material
Download Zhou et al. supplementary material(File)
File 23.5 KB