Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T16:01:27.808Z Has data issue: false hasContentIssue false

Embryonic development in Zungaro jahu

Published online by Cambridge University Press:  22 November 2016

Camila Marques
Affiliation:
Fundação Amaral Carvalho, Jaú, São Paulo, Brazil.
Francine Faustino
Affiliation:
Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
Bruno Bertolucci
Affiliation:
Fundação Amaral Carvalho, Jaú, São Paulo, Brazil.
Maria do Carmo Faria Paes
Affiliation:
UNESP's Aquaculture Centre (CAUNESP), Universidade Estadual Paulista, Campus Jaboticabal, São Paulo, Brazil.
Regiane Cristina da Silva
Affiliation:
UNESP's Aquaculture Centre (CAUNESP), Universidade Estadual Paulista, Campus Jaboticabal, São Paulo, Brazil.
Laura Satiko Okada Nakaghi*
Affiliation:
Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciencias Agrarias e Veterinarias (FCVA), Univesidade Estadual Paulista ‘Julio de Mesquita Filho’, Via de Acesso Professor Paulo Donato Castellani, S/N, Jaboticabal-SP, CEP 14884–900, Brazil
*
All correspondence to: Laura Satiko Okada Nakaghi. Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciencias Agrarias e Veterinarias (FCVA), Univesidade Estadual Paulista ‘Julio de Mesquita Filho’, Via de Acesso Professor Paulo Donato Castellani, S/N, Jaboticabal-SP, CEP 14884–900, Brazil. Tel:/Fax: +55 16 3209 2654 (ext. 232). E-mail: [email protected]

Summary

The aim of this study was to characterize the embryonic development of Zungaro jahu, a fresh water teleostei commonly known as ‘jaú’. Samples were collected at pre-determined times from oocyte release to larval hatching and analysed under light microscopy, transmission electron microscopy and scanning electron microscopy. At the first collection times, the oocytes and eggs were spherical and yellowish, with an evident micropyle. Embryo development took place at 29.4 ± 1.5°C and was divided into seven stages: zygote, cleavage, morula, blastula, gastrula, organogenesis, and hatching. The differentiation of the animal and vegetative poles occured during the zygote stage, at 10 min post-fertilization (mpf), leading to the development of the egg cell at 15 mpf. From 20 to 75 mpf, successive cleavages resulted in the formation of 2, 4, 8, 16, 32 and 64 blastomeres. The morula stage was observed between 90 and 105 mpf, and the blastula and gastrula stage at 120 and 180 mpf; respectively. The end of the gastrula stage was characterized by the presence of the yolk plug at 360 mpf. Organogenesis followed, with differentiation of the cephalic and caudal regions, elongation of the embryo by the cephalo-caudal axis, and somitogenesis. Hatching occurred at 780 mpf, with mean larval total length of 3.79 ± 0.11 mm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, A.A., Gomes, L.C., Suzuki, H.I. & Júlio, H.F. Jr. (2004). Migratory fishes of the upper Paraná River Basin, Brazil. In Migratory Fishes of the South America (eds Carolsfield, J., Harvey, B., Ross, C. & Baer, A.), pp. 1998. Victoria, Canada: World Fisheries Trust/Banco Mundial.Google Scholar
Balinsky, B.I. (1970). An Introduction to Embryology. Philadelphia: Saunders Company, 698 pp.Google Scholar
Blaxter, J.H.S. (1988). Pattern and variety in development. Fish Physiol. 1, 158.Google Scholar
Botero, M., Fresneda, A., Montoya, A.F. & Ángel, M.O. (2004). Descripción del desarrollo embrionário de zigotos híbridos obtenidos por el cruce de machos de Cachama Blanca (Piaractus brachypomus) y hembras de Cachama Negra (Colossoma macropomum). Rev. Col. Cienc. Pec. 17, 3845.Google Scholar
Buzollo, H.R., Veríssimo-Silveira, I.R., Oliveira-Almeida, J.S., Okuda, A.H.T. & Ninhaus-Silveira, A. (2011). Structural analysis of the Pimelodus maculatus (Lacépèle, 1803) embryogenesis (Siluriformes: Pimelodidae). Neotropical Ichthyol. 9, 601616.CrossRefGoogle Scholar
Cardoso, E.L., Alves, M.S.D., Ferreira, R.M.A. & Godinho, H.P. (1995). Embryogenesis of the neotropical freshwater Siluriforme Pseudoplatystoma coruscans . Aquat. Living Res. 8, 343–6.Google Scholar
Chen, K.C., Shao, K.T. & Yang, J.S. (1999). Using micropilar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J. Fish Biol. 55, 288300.Google Scholar
Coward, K., Bromage, N.R., Hibbitt, O. & Parrington, J. (2002). Gamete physiology, fertilization and egg activation in teleost fish. Rev. Fish Biol. Fisher. 12, 3358.CrossRefGoogle Scholar
Cussac, V.E., Matkovic, M.V. & Maggese, M.C. (1985). Desarrollo embrionário de Rhamdia sapo (Valenciennes, 1840) Eigenmann Y Eigenmann, 1888 (Pisces, Pimelodidae), I. Organogenesis media, organogenesis tardia y eclosion. Rev. Bras. Biol. 45, 149–60.Google Scholar
Depêche, J. & Billard, R. (1994). Embryology in Fish: A Review. Paris: Société Française d'Ichtyologie. 123 pp.Google Scholar
Faustino, F., Nakaghi, L.S.O., Marques, C., Makino, L. & Senhorini, J.A. (2007). Fertilização e desenvolvimento embrionário: morfometria e análise estereomicroscópica dos ovos dos híbridos de surubins (pintado, Pseudoplatystoma corruscans X cachara, Pseudoplatystoma fasciatum). [Fertilization and embrionary development: morphometry and stereomicroscope analysis in eggs of hybrids (Pseudoplatystoma corruscans X Pseudoplatystoma fasciatum).] Acta Sci. 29, 4955.Google Scholar
Faustino, F., Nakaghi, L.S.O. & Neumann, E. (2011). Brycon gouldingi (Teleostei, Characidae): aspects of the embryonic development in a new fish species with aquaculture potential. Zygote 19, 351–63.Google Scholar
Faustino, F., Makino, L.C., Neumann, E., Nakaghi, L.S.O. (2015). Morphological and morphometric aspects of early life stages of piabanha Brycon gouldingi (Characidae). J. Fish Biol. 86, 1491–506.Google Scholar
Flores, J.C.B., Araiza, M.A.F. & Valle, M.R.G. (2002). Desarrollo embrionario de Ctenopharyngodon indellus (Carpa herbívora). CIVA 2002, 792–7.Google Scholar
Galman, O.R. & Avtalion, R.R. (1989). Further study of the embryonic development of the Oreochromis niloticus (Ciclidae, teleostei) using scanning electron microscopy. J. Fish Biol. 34, 653664.CrossRefGoogle Scholar
Ganeco, L.N. (2003). Análise dos ovos de piracanjuba, Brycon orbignyanus (Valenciennes, 1894), durante a fertilização e o desenvolvimento embrionário, sob condições de reprodução induzida. [Analysis of piracanjuba eggs, Brycon orbignyanus (Valenciennes, 1894) during fertilization and embryonic development, reproduction under induced conditions.] Dissertação de Mestrado. FCAV-UNESP. Jaboticabal.Google Scholar
Ganeco, L.N. & Nakaghi, L.S.O. (2003). Morfologia da micrópila e da superfície dos ovócitos de piracanjuba, Brycon orbignyanus (Osteichtyes, Characidae), sob microscopia eletrônica de varredura. [Morphology of micropyle and the surface of piracanjuba oocyte, Brycon orbignyanus (Osteichtyes, Characidae) under scanning electron microscopy.] Acta Sci. 25, 227–31.Google Scholar
Gilbert, S.F. (2003). Biologia do Desenvolvimento. Quinta edição. [Biology of Development. 5th Edition.] Ribeirão Preto: FUNPEC, 962 pp.Google Scholar
Godinho, H.M., Fenerich, N.A. & Narahara, M.Y. (1978). Developing of embryos and larvae of Rhamdia hilarii (Valenciennes, 1840) (Siluriformes, Pimelodidae). Rev. Bras. Biol. 38, 151–6.Google Scholar
Goltermann, H.L., Clymo, R.S., Ohnstad, M.A.M. (1978). Methods for Physical and Chemical Analysis of Freshwaters. London: Blackwell Science Publication, IBP Handbook Number 8, 214 pp.Google Scholar
González-Doncel, M., Okihiro, M.S., Villalobos, S.A., Hinton, D.E. & Tarazona, J.V. (2005). A quick reference guide to the normal development of Oryzias latipes (Teleostei, Adrianichthyidae). J. Appl. Ichthyol. 21, 3952.Google Scholar
Hu, N., Sedmera, D., Post, H.J. & Clark, E.B. (2000). Structure and function of the developing zebrafish heart. Anat. Rec. 260, 148–57.Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R & Ullmann, B. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.Google Scholar
Lagler, K.F., Bardach, J.E., Miller, R.R. & Passino, D.R.M. (1977). Ichthyology Second Edition, New York: John Wiley & Sons, Inc., 506 pp.Google Scholar
Landines, M.A., Senhorini, J.A., Sanabria, A.I. & Urbinati, E.C. (2003). Desenvolvimento Embrionário do Pintado (Pseudoplatystoma coruscans Agassiz, 1829). [Embryonic development of Pintado (Pseudoplatystoma coruscans, Agassiz, 1829).] Bol. Tec. Cepta 6, 113.Google Scholar
Leme dos Santos, H.S. & Azoubel, R. (1996). Embriologia Comparada. [Compared embryology.] Jaboticabal: FUNEP, 189 pp.Google Scholar
Long, W. & Ballard, W. (1976). Normal embryonic stages of the white sucker, Catostomus commersonii . Copeia 2, 342351.CrossRefGoogle Scholar
Luz, R.K., Reynalte-Tataje, D.A., Ferreira, A.A. & Zaniboni-Filho, E. (2001). Desenvolvimento embrionário e estágios larvais do mandi-amarelo Pimelodus maculatus . [Embryonic development and larval stages of mandi amarelo Pimelodus maculatus.] Bol. Inst. Pesca 27, 4955.Google Scholar
Machado, A.B., Drummond, G.M. & Paglia, A.P., 2008. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. [Red Book of Brazilian Fauna endangered.] Ministério do Meio Ambiente (MMA), Brasília, 1420 pp.Google Scholar
Marques, C., Nakaghi, L.S.O, Faustino, F, Ganeco, L.N. & Senhorini, J.A. (2008). Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.Google Scholar
Matkovic, M.V., Cussac, V.E. & Cukier, M. (1985). Desarrollo embrionário de Rhamdia sapo (VALENCIENNES, 1840) EINGENMANN Y EINGENMANN, 1888 (P1SCES, PIMELODIDAE). I, Segmentación, morfogénesis y organogenesis temprana. Rev. Bras. Biol. 45, 3950.Google Scholar
Matsumura, Y. (1972). Egg development of scaled sardine Harengula pensacola Goode & Bean (Pisces, Clupeidae). Bol. Inst. Ocean. 21, 129135.CrossRefGoogle Scholar
Melo, R.M.C., Arantes, F.P., Sato, Y., Santos, J.E., Rizzo, E. & Bazzoli, N. (2011). Comparative morphology of the gonadal structure related to reproductive strategies in six species of neotropical catfishes (Teleostei: Siluriformes). J. Morphol, 272, 525–35.Google Scholar
Minas Gerais, Deliberação COPAM no. 366/2008. (2008). Aprova a Lista de Espécies Ameaçadas de Extinção da Fauna do Estado de Minas Gerais. Minas Gerais, Órgão Oficial dos Poderes do Estado, Belo Horizonte, 15 de dezembro de 2008. [Approves the Endangered Species List of Fauna of Minas Gerais State. Minas Gerais, official publication of the State, Belo Horizonte, December 15, 2008.]Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (2001). Ovos e Larvas de Peixes de Água Doce: Desenvolvimento e Manual de Identificação. [Eggs and Larvae of Freshwater Fish: Development and Identification.] Maringá: EDUEM/Nupélia, 359 pp.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.Google Scholar
Ninhaus-Silveira, A., Foresti, F., Azevedo, A., Agostinho, C.A. & Veríssimo-Silveira, R. (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontidae). Zygote 15, 267–71.Google Scholar
Perini, V.R., Sato, Y., Rizzo, E. & Bazzoli, N. (2009). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes). Zygote 18, 159–71.CrossRefGoogle Scholar
Rizzo, E. & Bazzoli, N.(1993). Oogenesis, oocyte surface and micropylar apparatus of Prochi lodLis ajfiflLls Reinhardt, 1874 (Pisces, Characiforrnes). Eur. Arch. BioI. 104, 16.Google Scholar
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615–32.CrossRefGoogle Scholar
Sanches, P.V., Nakatani, K. & Bialetzki, A. (1999). Morphological description of the developmental stages of Parauchenipterus galeatus (Linnaeus, 1766) (Siluriformes, Auchenipteridae) on the floodplain of the upper Paraná River. Rev. Bras. Biol. 59, 429–38.Google Scholar
São Paulo, Decreto no. 60.133/2014. (2014). Declara as Espécies da Fauna Silvestre Ameaçadas de Extinção, as Quase Ameaçadas e as Deficientes de Dados Para Avaliação no Estado de São Paulo e dá Providências Correlatas. São Paulo, Diário Oficial da União, Palácio dos Bandeirantes, 7 de fevereiro de 2014. [Declares Species of Wild Fauna Endangered, the Near Threatened and Data Disabled To review the São Paulo State and gives Measures Correlated. São Paulo Official Gazette, the Bandeirantes Palace, February 7, 2014.]Google Scholar
Sargent, R.C., Taylor, P.D. & Gross, M.R. (1987). Parental care and evolution of egg size in fishes. Am. Nat. 121, 3246.Google Scholar
Shardo, J.D. (1995). Comparative embryology of teleostean fishes. I. Development and staging of the American Shad, Alosa sapidissima (Wilson, 1811). J. Morphol. 225, 125–67.Google Scholar
Sipaúba-Tavares, L.H. (1995). Limnologia Aplicada à Aquicultura. [Limnology Applied to Aquaculture.] Jaboticabal, São Paulo: FUNEP-UNESP. 70 pp.Google Scholar
Tolosa, E.M.C., Behmer, O.A. & Freitas-Neto, A.G. (2003). Manual de Técnicas Para Histologia Normal e Patológica. [Technical Manual For Histology Normal and Pathologic.] Barueri–SP: Manole, 331 pp.Google Scholar
Vandewalle, P., Germeau, G., Besancenet, P., Parmentier, E. & Baras, E. (2005). Early development of the head skeleton in Brycon moorei (Pisces, Ostariophysi, Characidae). J. Fish Biol. 66, 9961024.Google Scholar
Vaz, M.M., Torquato, V.C. & Barbosa, N.D.C. (2000). (Org.). Guia Ilustrado de Peixes da Bacia do Rio Grande. Belo Horizonte: CEMIG/CETEC. [Fish Illustrated Guide of the Rio Grande Basin. Belo Horizonte: CEMIG/IEF.]Google Scholar
Vazzoler, A.E.A.M. (1996). Biologia da Reprodução de Peixes Teleósteos: Teoria e Prática. [Reproduction Biology of Teleosts Fish: Theory and Practice.] NUPÉLIA . Maringá: EDUEM. 169 pp.Google Scholar
Wourms, J.P. & Evans, D. (1974). The embryonic development of the black prickleback, Xiphister atropurpureus, a Pacific Coast blennioid fish. Can. J. Zool. 52, 879887.Google Scholar
Woynarovich, E. & Horváth, L. (1983). A Propagação Artificial de Peixes de Águas Tropicais. [The Artificial Propagation of Freshwater Tropical Fish.] Brasília, DF: FAO/CODEVASF–CNPq, (Manual de Extensão, 5), 220 pp.Google Scholar