Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T22:27:21.581Z Has data issue: false hasContentIssue false

Effects of cryostorage on human sperm chromatin integrity

Published online by Cambridge University Press:  08 March 2012

Adriana Fortunato*
Affiliation:
IDF Centre, Piazza Municipio 4, 80138 Napoli, Italy.
Rita Leo
Affiliation:
IDF Centre, Piazza Municipio 4, 80138- Napoli, Italy.
Francesca Liguori
Affiliation:
IDF Centre, Piazza Municipio 4, 80138- Napoli, Italy.
*
All correspondence to: Adriana Fortunato. IDF Centre, Piazza Municipio 4, 80138 Napoli, Italy. Tel: +39 081 4201048. Fax: +39 081 4971164. e-mail: [email protected]

Summary

The integrity of sperm chromatin structure has proven to be of great importance for human fertility. In this study, we investigated whether sperm cryopreservation has an effect on nuclear DNA tertiary structure, (i.e. condensation), measured by aniline blue staining, in 103 male patients who required consultation for hypo-fertility. Sperm DNA damage was significantly higher in patients showing oligospermia and severe morphological abnormalities than in native sperm populations. Furthermore we observed that chromatin decondensation was related to the cryostorage technique and to the duration of storage. This increase in decondensation was highly significant (P < 0.01) immediately after cryopreservation and from 90 days of cryostorage onwards. The possible mechanisms involved in sperm chromatin cryoinjury and the need to incorporate new methods for testing sperm nuclear structure alteration into the routine spermiogram are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A. & Said, T.M. (2003). Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update 9, 331–45.CrossRefGoogle ScholarPubMed
Aitken, R.J., Buckingham, D., West, K., Wu, F.C.. Zikopoulos, K. & Richardson, D.W. (1992). Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J. Reprod. Fertil. 94, 451–62.CrossRefGoogle Scholar
Aitken, R.J., Koopman, P. & Lewis, S.E. (2004). Seeds of concern. Nature 432, 4852.CrossRefGoogle ScholarPubMed
Aitken, R.J. & De Iuliis, G.N. (2007). Origins and consequences of DNA damage in male germ cells. Reprod. Biomed. Online. 14, 727–33.CrossRefGoogle ScholarPubMed
Aitken, R.J. & De Iuliis, G.N. (2010). On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 313.CrossRefGoogle ScholarPubMed
Alvarez, J.G. & Storey, B.T. (1992). Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J. Androl. 13, 232–41.CrossRefGoogle ScholarPubMed
Auger, J., Mesbah, M., Huber, C. & Dadoune, J.P. (1990). Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int. J. Androl. 13, 452–62.CrossRefGoogle ScholarPubMed
Balhorn, R., Cosman, M., Tornton, K., Krishnan, V.V., Corzett, M., Bench, G., Kramer, C., Lee IV, J., Hud, N.V., Allen, M., Prieto, M., Meyer-Ilse, W., Brown, J.T., Kirz, J., Zhang, X., Bradbury, E.M., Maki, G., Braun, R.E. & Breed, W. (1999). Protamine mediated condensation of DNA in mammalian sperm. In: The Male Gamete: From Basic Science to Clinical Applications. (ed. Gagnon, C.); Cache River Press; Vienna; pp. 5570.Google Scholar
Ball, B.A., Vo, A.T. & Baumber, J. (2001). Reactive oxygen species generation by equine spermatozoa. Am. J. Vet. Res. 62, 5508–15.CrossRefGoogle ScholarPubMed
Belloc, S., Benkhalifa, M., Junca, A.M., Dumont, M., Bacrie, P.C. & Ménézo, Y. (2009). Paternal age and sperm DNA decay: discrepancy between chromomycin and aniline blue staining. Reprod. Biomed. Online 19, 264–69.CrossRefGoogle ScholarPubMed
Bennetts, L.E. & Aitken, R.J. (2005). A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol. Reprod. Dev. 71, 7787.CrossRefGoogle ScholarPubMed
Bilodeau, J.F., Chatterjee, S., Sirard, M.A. & Gagnon, C. (2000). Level of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 55, 282–88.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Björndahl, L. & Kvist, U. (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 16, 2329.CrossRefGoogle ScholarPubMed
Bungum, M., Humaidan, P., Axmon, A., Spano, M., Bungum, L., Erenpreiss, J. & Giwercman, A. (2007). Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 22, 174–79.CrossRefGoogle ScholarPubMed
Caglar, G.S, Hammadeh, M., Asimakopoulos, B., Nikolettos, N., Diedrich, K. & Al-Hassani, S. (2005). In vivo and in vitro decondensation of human sperm and assisted reproduction technologies. In Vivo 19, 623–30.Google ScholarPubMed
Carrell, D.T. & Liu, L. (2001). Altered protamine 2 expression is uncommon in donors of known 30 fertility, but common among men with poor fertilizing capacity, and may reflect other 31 abnormalities of spermiogenesis. J. Andrology 22, 604–10.CrossRefGoogle Scholar
Chitale, A.R. & Rathaur, R.G. (1995). Nuclear decondensation of sperm head and failure at in-vitro fertilization: an ultrastructural study. Hum. Reprod. 10, 594–98.CrossRefGoogle ScholarPubMed
Curry, M.R. & Watson, P.F. (1995). Sperm structure and function In: Gametes, the Spermatozoon (eds. Grudzinskas, J.G. and Yovich, J.L.). Cambridge University Press, Cambridge pp. 4569.Google Scholar
Dadoune, J.P., Mayaux, M.J. & Guihard-Moscato, M.L. (1988). Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia 20, 211–17.CrossRefGoogle ScholarPubMed
De Iuliis, G.N., Thomson, L.K., Mitchell, L.A., Finnie, J.M., Koppers, A.J., Hedges, A., Nixon, B. & Aitken, R.J. (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 81, 517–24.CrossRefGoogle ScholarPubMed
de Lamirande, E. & O'Flaherty, C. (2008). Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta. 1784, 106–15.CrossRefGoogle ScholarPubMed
Donnelly, E.T., McClure, N. & Lewis, S.E. (2001). Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil. Steril. 76, 892900.CrossRefGoogle ScholarPubMed
Esterhuizen, A.D., Franken, D.R., Lourens, J.G., Prinsloo, E. & van Rooyen, L.H. (2000). Sperm chromatin packaging as an indicator of in-vitro fertilization rates. Hum. Reprod. 15, 657–61.CrossRefGoogle ScholarPubMed
Esterhuizen, A.D., Franken, D.R., Becker, P.J., Lourens, J.G.H., Müller, I.I. & van Rooyen, L.H. (2002). Defective sperm decondensation: a cause for fertilization failure. Andrologia 34, 17.CrossRefGoogle ScholarPubMed
Evenson, D.P., Jost, L.K., Marshall, D., Zinaman, M.J., Clegg, E., Purvis, K., de Angelis, P. & Claussen, O.P. (1999). Utility of sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum. Reprod. 14, 1039–49.CrossRefGoogle ScholarPubMed
Evenson, D.P., Larson, K.L. & Jost, L.K. (2002). Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with the other techniques. J. Androl. 23, 2543.CrossRefGoogle ScholarPubMed
Ford, W.C., Whittington, K. & Williams, A.C. (1997). Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int. J. Androl. 20 Suppl 3, 44–9.Google ScholarPubMed
Franken, D.R., Franken, C.J., de la Guerre, H. & de Villiers, A. (1999). Sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia 31, 361–6.CrossRefGoogle ScholarPubMed
Fraser, L., & Strzezek, J. (2007). Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing–thawing? Theriogenology 68, 248–57.CrossRefGoogle Scholar
Giwercman, A., Lindstedt, L., Larsson, M., Bungum, M., Spano, M., Levine, R.J. & Rylander, L. (2010). Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int. J. Androl. 33, 221–7.CrossRefGoogle ScholarPubMed
Haidl, G. & Schill, W.B. (1994). Assessment of sperm chromatin condensation: an important test for prediction of IVF outcome. Arch. Androl. 32, 263–6.CrossRefGoogle ScholarPubMed
Hammadeh, M.E., Askari, A.S., Georg, T., Rosenbaum, P. & Schmidt, W. (1999). Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int. J. Androl. 22, 155–62.CrossRefGoogle ScholarPubMed
Hammadeh, M.E., Strehler, E., Zeginiadou, T., Rosenbaum, P. & Schmidt, W. (2001). Chromatin decondensation of human sperm in vitro and its relation to fertilization rate after ICSI. Arch. Androl. 47, 83–7.CrossRefGoogle ScholarPubMed
Johnson, G.D., Lalancette, C., Linnemann, A.K., Leduc, F., Boissonneault, G. & Krawetz, S.A. (2011). The sperm nucleus: chromatin, RNA and the nuclear matrix. Reproduction 141, 2136.CrossRefGoogle ScholarPubMed
Kazerooni, T., Asadi, N., Jadid, L., Kazerooni, M., Ghanadi, A., Ghaffarpasand, F., Kazerooni, Y. & Zolghadr, J. (2009). Evaluation of sperm's chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J. Assist. Reprod. Genet. 26, 591–6.CrossRefGoogle ScholarPubMed
Krüger, T.F., Acosta, A.A. & Simmons, K.F. (1987). New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology 30, 248–51.CrossRefGoogle ScholarPubMed
Lee, S.J., Schover, L.R., Partridge, A.H., Patrizio, P., Wallace, W.H., Hagerty, K., Beck, L.N., Brennan, L.V. & Oktay, K. (2006). American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J. Clin. Oncol. 24, 2917–31.CrossRefGoogle Scholar
Lefièvre, L., Bedu-Addo, K., Conner, S.J., Machado-Oliveira, G.S., Chen, Y., Kirkman-Brown, J.C., Afnan, M.A., Publicover, S.J., Ford, W.C. & Barratt, C.L. (2007). Counting sperm does not add up any more: time for a new equation? Reproduction 133, 675–84.CrossRefGoogle Scholar
Lin, M.H., Kuo-Kuang Lee, R., Li, S.H., Lu, C.H., Sun, F.J. & Hwu, Y.M. (2008). Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil. Steril. 90, 352–9.CrossRefGoogle Scholar
Lopes, S., Jurisicova, A. & Sun, J.G. & Casper, R.F. (1998). Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13, 896900.CrossRefGoogle ScholarPubMed
Martin, G., Sabido, O., Durand, P. & Levy, R. (2004.) Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol Reprod. 71, 2837.CrossRefGoogle ScholarPubMed
Ménézo, Y., Hazout, A., Panteix, G.et al. (2007). Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod. Biomed. Online 14, 418–21.CrossRefGoogle ScholarPubMed
Ménézo, Y., Hazout, A., Panteix, G., Robert, F., Rollet, J., Cohen-Bacrie, P., Chapuis, F., Clément, P. & Benkhalifa, M. (2010) DNA damage and repair in human oocytes and embryos: a review. Zygote 18, 357–65.CrossRefGoogle ScholarPubMed
Oliva, R. (2006). Protamines and male infertility. Hum. Reprod. Update 12, 417–35.CrossRefGoogle ScholarPubMed
Paasch, U., Sharma, R.K., Gupta, A.K., Grunewald, S., Mascha, E.J., Thomas, A.J. Jr, Glander, H.J. & Agarwal, A. (2004). Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol. Reprod. 71, 1828–37.CrossRefGoogle ScholarPubMed
Padron, O.F., Brackett, N.L., Sharma, R.K., Lynne, C.M., Thomas, A.J. Jr & Agarwal, A. (1997). Seminal reactive oxygen species, sperm motility and morphology in men with spinal cord injury. Fertil. Steril. 67, 1115–20.CrossRefGoogle ScholarPubMed
Pons-Rejraji, H., Sion, B., Saez, F., Brugnon, F., Janny, L. & Grizard, G. (2009). Role of reactive oxygen species (ROS) on human spermatozoa and male infertility. Gynecol. Obstet. Fertil. 37, 529–35.CrossRefGoogle ScholarPubMed
Royere, D., Hamamah, S., Nicolle, J.C., Barthelemy, C. & Lansac, J. (1988). Freezing and thawing alter chromatin stability of ejaculated human spermatozoa: fluorescence acridine orange staining and Feulgen-DNA cytophotometric studies. Gamete Res. 21, 51–7.CrossRefGoogle ScholarPubMed
Royere, D., Barthelemy, C., Hamamah, S. & Lansac, J. (1996). Cryopreservation of spermatozoa: a 1996 review. Hum. Reprod. Update 2, 553–9.CrossRefGoogle ScholarPubMed
Rousseaux, S., Reynoird, N., Escoffier, E., Thevenon, J., Caron, C. & Khochbin, S. (2008). Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod. Biomed. Online 16, 492503.CrossRefGoogle ScholarPubMed
Roux, C., Tripogney, C., Joanne, C. & Bresson, J.L. (2004). Nuclear quality of the spermatozoon: exploration tests of the chromatin of human spermatozoa (nuclear proteins). Gynecol. Obstet. Fertil. 32, 792–8.CrossRefGoogle ScholarPubMed
Roux, C., Reynoird, N., Escoffier, E., Thevenon, J., Caron, C. & Khochbin, S. (2008). Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod. Biomed. Online 16, 492503.Google Scholar
Said, T.M., Gaglani, A. & Agarwal, A. (2010). Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 21, 456–62.CrossRefGoogle ScholarPubMed
Salsabili, N., Mehrsai, A., Jalalizadeh, B., Pourmand, G. & Jalaie, S. (2006). Correlation of sperm nuclear chromatin condensation staining method with semen parameters and sperm functional tests in patients with spinal cord injury, varicocele, and idiopathic infertility. Urol. J. 3, 32–7.Google ScholarPubMed
SAS (1988). User's guide/STAT (Release 6.03 edition). Cary, NC: statistical analysis system institute.Google Scholar
Silva, P.F. & Gadella, B.M. (2006). Detection of damage in mammalian sperm cells. Theriogenology 65, 958–78.CrossRefGoogle ScholarPubMed
Tarozzi, N., Nadalini, M., Stronati, A., Bizzaro, D., Dal Prato, L., Coticchio, G. & Borini, A. (2009). Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod. Biomed. Online 18, 486–95.CrossRefGoogle ScholarPubMed
Terquem, T. & Dadoume, J.P. (1983). Aniline blue staining of human spermatozoa chromatin. Evaluation of nuclear maturation. In: The Sperm Cell (ed. Andre, J.); Martinus Nijhoff Publishers; The Hague; The Netherlands pp. 249–52.CrossRefGoogle Scholar
Virro, M.R, Larson-Cook, K.L. & Evenson, D.P. (2004). Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil. Steril. 81, 1289–95.CrossRefGoogle ScholarPubMed
Ward, W.S. (2010). Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 16, 30–6.CrossRefGoogle ScholarPubMed
World Health Organization (1999). WHO Laboratory Manual for Examination of Human Semen and Sperm-Cervical Mucus Interaction, 4th edn. Cambridge University Press, Cambridge, UK.Google Scholar
Zini, A., Bielcki, R., Phang, D. & Zenzes, M.T. (2001). Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil. Steril. 75, 674–7.CrossRefGoogle ScholarPubMed
Zini, A., Phillips, S., Courchesne, A., Boman, J.M., Baazeem, A., Bissonnette, F., Kadoch, I.J. & San Gabriel, M. (2009). Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay. Fertil. Steril. 91, 2495–500.CrossRefGoogle ScholarPubMed