Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:33:09.141Z Has data issue: false hasContentIssue false

Effect of different superovulation stimulation protocols on adenosine triphosphate concentration in rabbit oocytes

Published online by Cambridge University Press:  15 April 2014

Carmela Cortell
Affiliation:
Centro de Investigación y Tecnología Animal (CITA). Instituto Valenciano de Investigaciones Agrarias (IVIA). Polígono La Esperanza nº100, 12.400 Segorbe (Castellón), Spain.
Pascal Salvetti
Affiliation:
UNCEIA, Department of Research and Development, 13 rue Jouet, 94704 Maisons-Alfort, France.
Thierry Joly
Affiliation:
Université de Lyon, ENVL/ISARA LYON, unité CRYOBIO, 23 rue Jean Baldassini, 69364 Lyon Cedex 07, France.
Maria Pilar Viudes-de-Castro*
Affiliation:
Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza nº100, 12.400 Segorbe (Castellón), Spain.
*
All correspondence to: M.P. Viudes-de-Castro. Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza nº100, 12.400 Segorbe (Castellón), Spain. Tel: + 34 964 712 166. Fax: + 34 964 710 218. e-mail: [email protected]

Summary

Ovarian stimulation protocols are used usually to increase the number of oocytes collected. The determination of how oocyte quality may be affected by these superovulation procedures, therefore, would be very useful. There is a high correlation between oocyte ATP concentration and developmental competence of the resulting embryo. The aim of this study was to evaluate the effect of follicle stimulating hormone (FSH) origin and administration protocols on oocyte ATP content. Rabbit does were distributed randomly into four groups: (i) a control group; (ii) the rhFSH3 group: females were injected, every 24 h over 3 days, with 0.6 μl of rhFSH diluted in polyvinylpyrrolidone (PVP); (iii) the pFSH3 group: females were injected every 24 h over 3 days with 11.4 μg of pFSH diluted in PVP; and (iv) the pFSH5 group: females were injected twice a day for 5 days with 11.4 μg of pFSH diluted in saline serum. Secondly, the effect of pFSH5 protocol on developmental potential was evaluated. Developmental competence of oocytes from the control and pFSH5 groups was examined. Differences in superovulation treatments were found for ATP levels. In the pFSH5 group, the ATP level was significantly lower than that of the other groups (5.63 ± 0.14 for pFSH group versus 6.42 ± 0.13 and 6.19 ± 0.15 for rhFSH3 and pFSH3, respectively; P < 0.05). In a second phase, only 24.28% of pFSH5 ova developed into hatched blastocysts compared with 80.39% for the control group. A negative effect on oocyte quality was observed in the pFSH5 group in ATP production, it is possible that, after this superovulation treatment, oocyte metabolism would be affected.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blondin, P., Coenen, K., Guilbault, L.A. & Sirard, M.A. (1996). Superovulation can reduce the developmental competence of bovine embryos. Theriogenology 46, 1191–203.CrossRefGoogle ScholarPubMed
Brevini, T.A.L., Vassena, R., Francisci, C. & Gandolfi, F. (2005). Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol. Reprod. 72, 1218–23.CrossRefGoogle ScholarPubMed
Combelles, M.H. & Albertini, D.F. (2003). Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse. Biol. Reprod. 60, 812–21.CrossRefGoogle Scholar
Cortell, C., Vicente, J.S., Mocé, E., Marco-Jiménez, F. & Viudes-de-Castro, M.P. (2008). Efficiency of repeated in vivo oocyte and embryo recovery after rhFSH treatment in rabbits. Reprod. Dom. Anim. 45, 155–9.CrossRefGoogle ScholarPubMed
Cummins, J. (2002). The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod. BioMed. Online 4, 176–82.CrossRefGoogle ScholarPubMed
D'Alessandro, A.G., Martemucci, G., Colonna, M.A., Borghese, A., Terzano, M.G. & Bellitti, A. (2001). Superovulation in ewes by a single injection of pFSH dissolved in polyvinylpyrrolidone (PVP): effects of PVP molecular weight, concentration and schedule of treatment. Anim. Reprod. Sci. 65, 255–64.CrossRefGoogle ScholarPubMed
Ertzeid, G. & Storeng, R. (2001). The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–5.CrossRefGoogle ScholarPubMed
Ferreira, E.M., Vireque, A.A., Adona, P.R., Meirelles, F.V., Ferriani, R.A. & Navarro, P.A.A.S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–48.CrossRefGoogle ScholarPubMed
Freistedt, P., Stojkovic, P., Wolf, E. & Stojkovic, M. (2001). Energy status of nonmatured and in vitro-matured domestic cat oocytes and of different stages of in vitro-produced embryos: enzymatic removal of the zona pellucida increases adenosine triphosphate content and total cell number of blastocysts. Biol. Reprod. 65, 793–8.CrossRefGoogle ScholarPubMed
Fujimoto, S., Pahlavan, N. & Dukelow, W.R. (1974). Chromosome abnormalities in rabbit preimplantation blastocysts induced by superovulation. J. Reprod. Fertil. 40, 177–81.CrossRefGoogle ScholarPubMed
Hashimoto, S., Kuramochi, T., Aoyagi, K., Takahashi, R., Ueda, M., Hirao, M., Kamei, M., Kitada, K. & Hirasawa, K. (2004). Refined porcine follicle stimulating hormone promotes the responsiveness of rabbits to multiple-ovulation treatment. Exp. Anim. 53, 395–37.CrossRefGoogle ScholarPubMed
Hillier, S.G. (2009). Paracrine support of ovarian stimulation. Mol. H. Reprod. 12, 843850.CrossRefGoogle Scholar
Joseph, S.M., Buchakjian, M.R. & Dubyak, G.R. (2003). Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J. Biol. Chem. 278, 23331–42.CrossRefGoogle ScholarPubMed
Kanaya, H., Hashimoto, S., Teramura, T., Morimoto, Y., Matsumoto, K., Saeki, K., Iritani, A. & Hosoi, Y. (2007). Mitochondrial dysfunction of in vitro grown rabbit oocytes results in preimplantation embryo arrest after activation. J. Reprod. Dev. 53, 631–7.CrossRefGoogle ScholarPubMed
Kanayama, K., Endo, T. & Sakuma, Y. (1992). Simplification of superovulation induction in rabbits by means of human menopausal gonadotrophin dissolved in polyvinylpyrrolidone. J. Vet. Med. Sci. 39, 798800.CrossRefGoogle ScholarPubMed
Kanayama, K., Sankai, T., Nariai, K., Endo, T. & Sakuma, Y. (1994). Simplification of superovulation induction by using polyvinylpyrrolidone as a solvent for FSH in rabbits. J. Vet. Med. Sci. 56, 599600.CrossRefGoogle ScholarPubMed
Kauffman, R.D., Schmidt, P.M., Rall, W.F. & Hoeg, J.M. (1998). Superovulation of rabbits with FSH alters in vivo development of vitrified morulae. Theriogenology 50, 1081–92.CrossRefGoogle ScholarPubMed
Krisher, R.L. (2004). The effect of oocyte quality on development. J. Anim. Sci. 82, E1423.Google ScholarPubMed
Lee, S.T., Oh, S.J., Lee, E.J., Han, H.J. & Lim, J.M. (2006). Adenosine triphosphate synthesis, mitochondrial number and activity, and pyruvate uptake in oocytes after gonadotropin injections. Fertil. Steril. 86, 1164–9.CrossRefGoogle ScholarPubMed
Lopes da Costa, L., Chagas e Silva, J. & Robalo Silva, J. (2001). Superovulatory response, embryo quality and fertility after treatment with different gonadotrophins in native cattle. Theriogenology 56, 6577.CrossRefGoogle ScholarPubMed
Mehaisen, G.M.K., Vicente, J.S., Lavara, R. & Viudes-de-Castro, M.P. (2005). Effect of eCG dose and ovulation induction treatments on embryo recovery and in vitro development post-vitrification in two selected lines of rabbit does. Anim. Reprod. Sci. 90, 175–84.CrossRefGoogle ScholarPubMed
Mehaisen, G.M.K., Viudes de Castro, M.P., Vicente, J.S. & Lavara, R. (2006). In vitro and in vivo vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology 65, 1279–91.CrossRefGoogle ScholarPubMed
Moor, R.M., Osborn, J.C., & Crosby, I.M. (1985). Gonadotrophin-induced abnormalities in sheep oocytes after superovulation. J. Reprod. Fertil. 74, 167–72.CrossRefGoogle ScholarPubMed
Nagano, M., Katagiri, S. & Takahashi, Y. (2006). ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote 14, 299304.CrossRefGoogle ScholarPubMed
Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P.C., Sousa, A.P. & Amaral, A. (2009). Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 15, 553–72.CrossRefGoogle ScholarPubMed
Rieger, D. (1997). Batch analysis of the ATP content of bovine sperm, oocytes and early embryos using a scintillation counter to measure the chemiluminescence produced by the luciferin–luciferase reaction. Anal. Biochem. 246, 6770.CrossRefGoogle ScholarPubMed
Rodrigues, P., Limback, D., McGinnis, L.K., Plancha, C.E. & Albertini, D.F. (2008). Oogenesis: Prospects and challenges for the future. J. Cell. Physiol. 16, 355–65.CrossRefGoogle Scholar
Rose, M.P., Gaines Das, R.E. & Balen, A.H. (2000). Definition ad measurement of follicle stimulating hormone. Endocr. Rev. 21, 522.CrossRefGoogle Scholar
Salvetti, P., Theau-Clement, M., Beckers, J.F., Hurtaud, J., Guerin, P., Neto, V., Falieres, J. & Joly, T. (2007). Effect of the luteinizing hormone on embryo production in superovulated rabbit does. Theriogenology 67, 1185–93.CrossRefGoogle ScholarPubMed
Schwiebert, E.M. & Zsembery, A. (2003). Extracellular ATP as a signaling molecule for epithelial cells. Biochim. Biophys. Acta 1615, 732.CrossRefGoogle ScholarPubMed
Stojkovic, M., Machado, S., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P. & Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–9.CrossRefGoogle ScholarPubMed
Tamassia, M., Nuttinck, F., May-Panloup, P., Reynier, P., Heyman, Y., Charpigny, G., Stojkovic, M., Hiendleder, S., Renard, J.P. & Chastant-Maillard, S. (2004). In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA and mitochondrial DNA haplogroup. Biol. Reprod. 71, 697704.CrossRefGoogle ScholarPubMed
Thouas, G.A., Trounson, A.O., Wolvetang, E.J. & Jones, G.M. (2004). Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol. Reprod. 71, 1936–42.CrossRefGoogle ScholarPubMed
Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–80.CrossRefGoogle ScholarPubMed
Van Blerkom, J., Davis, P.W. & Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–24.CrossRefGoogle ScholarPubMed
Van der Auwera, I. & D'Hooghe, T. (2001). Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 1, 1237–43.CrossRefGoogle Scholar
Viudes-de-Castro, M.P., Cortell, C., Mocé, E., Marco-Jiménez, F., Joly, T. & Vicente, J.S. (2009). Effect of recombinant gonadotropins on embryo quality in superovulated rabbit does and immune response after repeated treatments. Theriogenology 72, 655–62.CrossRefGoogle Scholar