Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T17:34:06.352Z Has data issue: false hasContentIssue false

Effect of cryoprotectants on the survival of cascudo preto (Rhinelepis aspera) embryos stored at –8°C

Published online by Cambridge University Press:  28 August 2011

Darci Carlos Fornari*
Affiliation:
Departamento de Zootecnia, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020–900, Maringá-PR, Brazil.
Ricardo Pereira Ribeiro
Affiliation:
PeixeGen Research Group, Maringa State University, Department of Animal Science, Maringa, Brazil.
Danilo Streit Jr
Affiliation:
Aquam Research Group, Federal University of Rio Grande do Sul, Department of Animal Science, Porto Alegre, Brazil.
Leandro Cesar Godoy
Affiliation:
Aquam Research Group, Federal University of Rio Grande do Sul, Department of Animal Science, Porto Alegre, Brazil.
Patrícia Ribeiro Neves
Affiliation:
Ponta Grossa State University, Department of Animal Science, Ponta Grossa, Brazil.
Diego de Oliveira
Affiliation:
Aquam Research Group, Federal University of Rio Grande do Sul, Department of Animal Science, Porto Alegre, Brazil.
Rodolfo Nardez Sirol
Affiliation:
Environment manager, CPFL Energy, São Paulo, Brazil.
*
All correspondence to: Darci Carlos Fornari. Departamento de Zootecnia, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020–900, Maringá-PR, Brazil. Tel: +55 44 3261 8969. Fax: +55 44 3261 4729. E-mail: [email protected]

Summary

Cryopreservation of germplasm provides a promising method to preserve fish genetic material, which is of great importance in preservation of species diversity, aquaculture, and management of fish models used in biomedical research. In the present study, cryopreservation of Rhinelepis aspera embryos, a Brazilian endangered species, was studied for the first time using a short-term cooling protocol. Embryos at blastoporous closing stage were selected, placed in 6-ml glass vials and stored at −8°C for 6 h in 10 different cryoprotectant solutions: S1 (17.1% sucrose + 9% methanol); S2 (17.1% sucrose + 9% DMSO); S3 (8.5% sucrose + 8.5% glucose + 9% methanol); S4 (8.5% sucrose + 8.5% glucose + 9% DMSO); S5 (17.1% sucrose + 9% ethylene glycol); S6 (8.5% sucrose + 8.5% glucose + 9% ethylene glycol); S7 (17.1% sucrose + 4.5% methanol + 4.5% DMSO); S8 (17.1% sucrose + 4.5% methanol + 4.5% ethylene glycol); S9 (17.1% sucrose + 4.5% DMSO + 4.5% ethylene glycol); and S10 (100% water). Embryo viability was assessed by hatching rate, counting live larvae and number of failed eggs under a stereomicroscope. The results showed that only the cryoprotectant solutions that contained methanol associated to sucrose (S1, S7 and S8) provided partial protection of Rhinelepis aspera embryos from cold damage (over 50% hatching rate in S1), while the use of DMSO and ethylene glycol, isolated or in combination, resulted in no hatching rate. Further studies are needed in order to extend the storage time and to improve the hatching rate for the species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abilhoa, V. & Duboc, L.F. (2004). Peixes. In: Livro vermelho dos animais ameaçados de extinção no estado do Paraná, (eds. Mikich, S.B. & Bérnils, R.S.), 764 pp. Curitiba: Mater Natura e Instituto Ambiental do Paraná.Google Scholar
Agostinho, A.A., Gomes, L.C. & Suzuki, H.I. (2003). Migratory fishes of upper Paraná river basin, Brazil. In: Migratory fishes of South America: Biology Social Importance and Conservation Status, (eds. Carolsfed, J., Harvey, B., Baer, A. & Ross, C.), pp. 1999. Victoria, Canada. World Fisheries Trust.Google Scholar
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (1998). Effect of different concentrations of cryoprotectant and extender on the hatching of Indian major carp embryos (Labeo rohita, Catla catla, and Cirrhinus mrigala) stored at low temperature. Cryobiology 37, 318–24.Google Scholar
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (2003a). Stage-dependent hatching responses of rohu (Labeo rohita) embryos to different concentrations of cryoprotectants and temperatures. Cryobiology 46, 216.Google Scholar
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (2003b). Hatching of common carp (Cyprinus carpio L.) embryo stored at 4 and−2 °C in different concentration of methanol and sucrose. Theriogenology 60, 1409–22.Google Scholar
Bart, A.N. (2000). New approaches in cryopreservation of fish embryos. In: Cryopreservation in Aquatic Species, (eds. Tiersch, T.R. & Mazik, P.M.), pp. 179–87. Baton Rouge, Louisiana: World Aquaculture Society.Google Scholar
Beirão, J., Robles, V., Herráez, M.P., Sarasquete, C., Dinis, M.T. & Cabrita, E. (2006). Cryoprotectant microinjection toxicity and chilling sensitivity in gilthead seabream (Sparus aurata) embryos. Aquaculture 261, 897903.Google Scholar
Bertolini, M. (1994). Sobrevivência in vitro e in vivo de embriões de Mus musculus vitrificados. 229 pp. Dissertação (Mestrado em Medicina Veterinária) Universidade Federal do Rio Grande do Sul, Porto Alegre.Google Scholar
Cabrita, E., Robles, V., Chereguini, O., Wallace, J.C. & Herráez, M.P. (2003). Effect of different cryoprotectants and vitrificant solutions on the hatching rate of turbot embryos (Scophthalmus maximus) Cryobiology 47, 204–13.Google Scholar
Cloud, J.G., Armstrong, R., Wheeler, P., Kucera, P.A. & Thorgaard, G.H. (2000). The northwest salmonid germplasm repository. In: Cryopreservation in Aquatic Species, (eds. Tiersch, T.R. & Mazik, P.M.), pp. 338–42. Baton Rouge, Louisiana: World Aquaculture Society.Google Scholar
Dinnyés, A., Urbhnyi, B., Baranyai, B. & Magyary, I. (1998). Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50, 113.Google Scholar
Fornari, D.C., Ribeiro, R.P., Streit, D.P. Jr.Vargas, L. & Moraes, V.G. (2010). Freezing injuries in the embryos of Piaractus mesopotamicus Zygote 18, 16.Google Scholar
Lahnsteiner, F. (2008). The effect of internal and external cryoprotectants on zebrafish (Dario rerio) embryo. Theriogenology 69, 384–96.Google Scholar
Rall, W.F. (1987). Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24, 387402.Google Scholar
Streit, D.P. Jr., Digmayer, M., Ribeiro, R.P., Sirol, R.N., Moraes, G.V. & Galo, J.M. (2007). Embriões de pacu submetidos a diferentes protocolos de resfriamento. Pesqui Agropecu Bras. 42, 1199–202.Google Scholar
Széll, A. & Shelton, J.N. (1986). Role of equilibration before rapid freezing of mouse embryos J. Reprod. Fertil. 78, 699703.Google Scholar
Voelkel, S.A. & Hu, Y.X. (1992). Use of ethylene glycol as a cryoprotectant for bovine embryos allowing direct transfer of frozen–thawed embryos to recipient females. Theriogenology 37, 687–97.Google Scholar
Woynarovich, E. & Horváth, L. (1983). A propaga cao artificial de peixes de águas tropicais: manual de extensão. 220 pp. Brasília: FAO/CODEVASF/CNPq.Google Scholar
Zhang, T. & Rawson, D.M. (1995). Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32, 239–46.Google Scholar