Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:27:09.112Z Has data issue: false hasContentIssue false

Differential gene expression and developmental competence in in vitro produced bovine embryos

Published online by Cambridge University Press:  15 April 2011

Paula Ripamonte
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Lígia Garcia Mesquita
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Sylvia Sanches Cortezzi
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Júlio César de Carvalho Balieiro
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Giovana Krempel Fonseca Merighe
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Yeda Fumie Watanabe
Affiliation:
Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Ciências Básicas, Pirassununga, SP, Brazil.
Alexandre Rodrigues Caetano
Affiliation:
EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
Flávio Vieira Meirelles*
Affiliation:
Departamento de Ciências Básicas, Universidade de São Paulo, FZEA, Pirassununga, SP, Brazil., Av. Duque de Caxias Norte 225, Pirassununga, São Paulo, Brasil CEP 13635–900.
*
All correspondence to: F.V. Meirelles. Departamento de Ciências Básicas, Universidade de São Paulo, FZEA, Pirassununga, SP, Brazil., Av. Duque de Caxias Norte 225, Pirassununga, São Paulo, Brasil CEP 13635–900. Tel: +55 19 3565 4112. e-mail: [email protected]

Summary

The embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (S4) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badr, H., Bongioni, G., Abdoon, A.S.S., Kandil, O. & Puglisi, R. (2007). Gene expression in the in vitro-produced preimplantation bovine embryos. Zygote 15, 355367.CrossRefGoogle ScholarPubMed
Betts, D.H. & King, W.A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–91.CrossRefGoogle ScholarPubMed
Biase, F.H., Fonseca Merighe, G.K., Santos Biase, W.K., Martelli, L. & Meirelles, F.V. (2008). Global poly(A) mRNA expression profile measured in individual bovine oocytes and cleavage embryos. Zygote 16, 2938.CrossRefGoogle ScholarPubMed
Bousquet, D., Twagiramungu, H., Morin, N., Brisson, C., Carboneau, G. & Durocher, J. (1999). In vitro embryo production in the cow: an effective alternative to the conventional embryos production approach. Theriogenology 51, 5970.CrossRefGoogle Scholar
Brevini, T.A.L., Lonergan, P., Cillo, F., Francisci, C., Favetta, L.A., Fair, T. & Gandolfi, F. (2002). Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol. Reprod. Dev. 63, 510–7.CrossRefGoogle ScholarPubMed
Choi, D.K., Yoo, K.W., Hong, S.K., Rhee, M., Sakaki, Y. & Kim, C.H. (2003). Isolation and expression of Napor/CUG-BP2 in embryo development. Biochem. Biophys. Res. Commun. 305, 448–54.CrossRefGoogle ScholarPubMed
Craddock, B.L., Orchiston, E.A., Hinton, H.J. & Welham, M.J. (1999). Dissociation of apoptosis from proliferation, protein kinase B activation, and BAD phosphorylation in interleukin-3-mediated phosphoinositide 3-kinase signaling. J. Biol. Chem. 274, 10633–40.CrossRefGoogle ScholarPubMed
Dalbiés-Tran, R. & Mermillod, P. (2003). Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod. 68, 252–61.CrossRefGoogle ScholarPubMed
Debierre-Grockiego, F. (2004). Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 9, 717–28.CrossRefGoogle ScholarPubMed
De Sousa, P.A., Caveney, A., Westhusin, M.E. & Watson, A.J. (1998a). Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 49, 1528.CrossRefGoogle ScholarPubMed
De Sousa, P.A., Westhusin, M.E. & Watson, A.J. (1998b). Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Mol. Reprod. Dev. 49, 119–30.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Deleersnijder, W., Hong, G., Cortvrindt, R., Poirier, C., Tylzanowski, P., Pittois, K., Van Marck, E. & Merregaert, J. (1996). Isolation of markers for chondro-osteogenic differentiation using cDNA library subtraction. Molecular cloning and characterization of a gene belonging to a novel multigene family of integral membrane proteins. J. Biol. Chem. 271, 19475–82.CrossRefGoogle ScholarPubMed
Fleischer, A., Ayllon, V., Dumoutier, L., Renault, J.C. & Rebollo, A. (2002a). Proapoptotic activity of ITM2Bs, a BH3-only protein induced upon IL-2-deprivation which interacts with Bcl-2. Oncogene 21, 3181–9.CrossRefGoogle ScholarPubMed
Fleischer, A., Ayllon, V. & Rebollo, A. (2002b). ITM2Bs regulate apoptosis by inducing loss of mitochondrial membrane potential. Eur. J. Immun. 32, 34983505.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Fleischer, A. & Rebollo, A. (2004). Induction of p53-independent apoptosis by the BH3-only protein ITM2Bs. FEBS Lett. 557, 283–7.CrossRefGoogle ScholarPubMed
Fruman, D.A., Meyers, R.E. & Cantley, L.C. (1998). Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481507.CrossRefGoogle ScholarPubMed
Garcia, S.M. (1994). Bloqueio e morte celular programada em embriões bovinos: efeitos da fonte de suplementação protéica e da cinética do desenvolvimento. Dissertação de Mestrado, FZEA/USP.Google Scholar
Gordon, I. (1994). Laboratory Production of Cattle Embryos 1st edn. Cambridge University Press.Google Scholar
Gavrieli, Y., Sherman, Y. & Bem-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J. Cell Biol. 119, 493501.CrossRefGoogle ScholarPubMed
Gutierréz-Adán, A., Rizos, D., Fair, T., Moreira, P.N., Pintado, B., De La Fuente, J., Boland, M.P. & Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–8.CrossRefGoogle ScholarPubMed
Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M.W., Lane, H.C. & Lempicki, R.A. (2007). DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists Nucl. Acid Res. 35, W16975.CrossRefGoogle ScholarPubMed
Jurisicova, A., Latham, K.E., Casper, R.F., Casper, R.F. & Varmuza, S.L. (1998). Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51, 243–53.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Kaňka, J. (2003). Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59, 319.CrossRefGoogle ScholarPubMed
Kaňka, J., Bryova, A., Duranthon, V., Oudin, J.-F., Peynot, N. & Renard, J.P. (2003). Identification of differentially expressed mRNAs in bovine preimplantation embryos. Zygote 11, 4352.CrossRefGoogle ScholarPubMed
Kralj, J.G., Player, A., Sedrick, H., Munson, M.S., Petersen, D., Forry, S.P., Meltzer, P., Kawasaki, E. & Locascio, L.E. (2009). T7-based linear amplification of low concentration mRNA samples using beads and microfluidics for global gene expression measurements. Lab. Chip 7, 917–24.CrossRefGoogle Scholar
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative expression data using real-time quantitative PCR and 2−ΔΔCtmethod. Methods 25, 402–8.CrossRefGoogle Scholar
Lonergan, P. (1994). Growth of preimplantation bovine embryos. Acta Vet. Scand. 35, 307–20.CrossRefGoogle ScholarPubMed
Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P. & Boland, M.P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex and pregnancy rates following transfer of bovine preimplantation embryos. J. Reprod. Fertil. 117, 159–67.CrossRefGoogle Scholar
Lonergan, P., Gutiérrez-Adán, A., Fair, T. & Boland, M.P. (2003). Effect of culture environment on embryo quality and gene expression – experience from animal studies. Reprod. Biomed. Online 7, 657–63.CrossRefGoogle ScholarPubMed
Ma, J., Svoboda, P., Schultz, R.M. & Stein, P. (2001). Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol. Reprod. 64, 1713–21.CrossRefGoogle ScholarPubMed
Mamo, S., Sargent, C.A., Affara, N.A., Tesfaye, D., El-Halawany, N., Wimmers, K., Gilles, M., Schellander, K. & Ponsuksili, S. (2006). Transcript profiles of some developmentally important genes detected in bovine oocytes and in vitro-produced blastocysts using RNA amplification and cDNA microarrays. Reprod. Dom. Anim. 41, 527–34.CrossRefGoogle ScholarPubMed
Meirelles, F.V., Caetano, A.R., Watanabe, Y.F., Ripamonte, P., Carambula, S.F., Merighe, G.K. & Garcia, S.M. (2004). Genome activation and developmental block in bovine embryos. Ann. Reprod. Sci. 82–83, 1320.CrossRefGoogle ScholarPubMed
Memili, E. & First, N.L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression compared with others species. Zygote 8, 8796.CrossRefGoogle Scholar
Natale, D.R., De Sousa, P.A., Westhusin, M.E. & Watson, A.J. (2001). Sensitivity of bovine blastocyst gene expression patterns to culture environment assessed by differential display RT-PCR. Reproduction 122, 687–93.CrossRefGoogle ScholarPubMed
Niemann, H. & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 2134.CrossRefGoogle ScholarPubMed
Niemann, H. & Wrenzycki, C. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online 7, 649–56.Google Scholar
Nozawa, K., Casiano, C.A., Hamel, J.C., Molinaro, C., Fritzler, M.J. & Chan, E.K. (2002). Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis. Arthritis Res. 4, R3.CrossRefGoogle ScholarPubMed
Pavlok, A., Lucas-Hahn, A. & Niemann, H. (1992). Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Mol. Reprod. Dev. 31, 63–7.CrossRefGoogle ScholarPubMed
Ripamonte, P., Merighe, G.K., Watanabe, Y.F., Caetano, A.R. & Meirelles, F.V. (2005). Development and optimization of a fluorescent differential display PCR system for studying bovine embryo development in vitro. Genet. Mol. Res. 4, 726–33.Google ScholarPubMed
Schultz, R.M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–8.CrossRefGoogle ScholarPubMed
Schultz, R.M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–31.CrossRefGoogle ScholarPubMed
Telford, N.A., Watson, A.J. & Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90100.CrossRefGoogle ScholarPubMed
Tesfaye, D., Ponsuksili, S., Wimmers, K., Gilles, M. & Schellander, K. (2003). Identification and quantification of differentially expressed transcripts in in vitro-produced bovine preimplantation stage embryos. Mol. Reprod. Dev. 66, 105–14.CrossRefGoogle ScholarPubMed
Van Den Plas, J. & Merregaert, D. (2004). In vitro studies on Itm2a reveal its involvement in early stages of the chondrogenic differentiation pathway. Biol. Cell. 96, 463–70.CrossRefGoogle ScholarPubMed
Watanabe, M.R., Franceschini, P.H., Dayan, A., Galerani, M.A.V., Vila, R.A., Lôbo, R.B. & Watanabe, Y.F (1999). Ultrasound guided oocytes recovery in Nellore cows and in vitro embryo production. Theriogenology 51, 438.CrossRefGoogle Scholar
Watson, A.J., De Sousa, P., Caveney, A., Barcroft, L.C., Natale, D., Urquhart, J. & Westhusin, M.E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number and apoptosis. Biol. Reprod. 62, 355–64.CrossRefGoogle ScholarPubMed
Wrenzycki, C., Herrmann, D. & Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68, 7783.CrossRefGoogle ScholarPubMed
Wymann, M.P., Zvelebil, M. & Laffargue, M. (2003). Phosphoinositide 3-kinase signalling—which way to target? Trends Pharmacol. Sci. 24, 366–76.CrossRefGoogle ScholarPubMed