Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:59:00.656Z Has data issue: false hasContentIssue false

Detrimental effects of antibiotics on mouse embryos in chromatin integrity, apoptosis and expression of zygotically activated genes*

Published online by Cambridge University Press:  30 June 2010

Jun Liu
Affiliation:
Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Shuang Tang
Affiliation:
Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Wei Xu
Affiliation:
Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Yongsheng Wang
Affiliation:
Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Baoying Yin
Affiliation:
Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
Yong Zhang*
Affiliation:
Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China. Key Laboratory of Animal Reproductive Physiology & Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
*
All correspondence to: Yong Zhang. Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China. Fax: +86 02987080085. e-mail: [email protected]

Summary

The effects of specific components in culture medium on embryo physiology have been extensively investigated to optimize in vitro culture systems; however, little attention has been paid to antibiotics, the reagents used most commonly in culture systems to prevent contamination. To investigate the potential effects of routine use of antibiotics on cultured embryos, mouse zygotes were cultured with or without antibiotics. In both groups, the developmental rate and cell number of blastocysts appear to be normal. The proportion of embryos with blastomere fragmentation increased slightly when embryos were cultured with antibiotics. In contrast, the presence of antibiotics in the embryo culture system significantly disturbs expression of zygotically activated genes, damages chromatin integrity and increases apoptosis of cultured embryos. These results provide evidence that, when cultured with antibiotics, embryos with normal appearance may possess intrinsic physiological and genetic abnormalities. We demonstrate that the adverse effects of antibiotics on mammalian embryos are more severe than we previously presumed and that antibiotics are not essential for sterility of embryo culture system therefore abolishing antibiotic supplementation during embryo culture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work is supported by grants from the Important National Science & Technology Specific Projects, China (No. 2008ZX08007-004).

References

Aitken, R.J. (2008). Just how safe is assisted reproductive technology for treating male factor infertility? Expert Rev. Obstet. Gynecol. 3, 267–71.Google Scholar
Amonn, F., Baumann, U., Wiesmann, U.N., Hofmann, K. & Herschkowitz, N. (1978). Effects of antibiotics on the growth and differentiation in dissociated brain cell cultures. Neuroscience 3, 465–8.CrossRefGoogle ScholarPubMed
Bavister, B.D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91148.CrossRefGoogle Scholar
Bavister, B.D. (2000). Interactions between embryos and the culture milieu. Theriogenology 53, 619–26.Google Scholar
Christians, E., Campion, E., Thompson, E.M. & Renard, J-P. (1995). Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121, 113–22.Google Scholar
Christians, E., Michelob, E. & Renard, J-P. (1997). Hsp70 genes and heat shock factors during preimplantation phase of mouse development. Cell. Mol. Life Sci. 53, 168–78.CrossRefGoogle ScholarPubMed
Ericson, A. & Kallen, B. (2001). Congenital malformations in infants born after IVF: a population-based study. Hum. Reprod. 16, 504–9.CrossRefGoogle ScholarPubMed
Felsenfeld, G., Boyes, J., Chung, J., Clark, D. & Studitsky, V. (1996). Chromatin structure and gene expression. Proc. Natl. Acad. Sci. USA 93, 9384–8.Google Scholar
Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M.A., De Fonseca, F.R., Pintado, B. & Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA 101, 5880–5.CrossRefGoogle ScholarPubMed
Fiorenza, M.T., Bevilacqua, A., Canterini, S., Torcia, S., Pontecorvi, M. & Mangia, F. (2004). Early transcriptional activation of the Hsp70.1 gene by osmotic stress in one-cell embryos of the mouse. Biol. Reprod. 70, 1606–113.CrossRefGoogle ScholarPubMed
Gandolfi, F. (1994). Autocrine, paracrine and environmental-factors influencing embryonic-development from zygote to blastocyst. Theriogenology 41, 95100.CrossRefGoogle Scholar
Gjorret, J.O., Knijn, H.M., Dieleman, S.J., Avery, B., Larsson, L.I. & Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol. Reprod. 69, 1193–200.CrossRefGoogle ScholarPubMed
Hansen, M., Kurinczuk, J.J., Bower, C. & Webb, S. (2002). The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N. Engl. J. Med. 346, 725–30.Google Scholar
Hansen, M., Bower, C., Milne, E., de Klerk, N. & Kurinczuk, J.J. (2005). Assisted reproductive technologies and the risk of birth defects – a systematic review. Hum. Reprod. 20, 328–38.CrossRefGoogle ScholarPubMed
Hardy, K. (1997). Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3, 919–25.CrossRefGoogle ScholarPubMed
Ho, Y., Wigglesworth, K., Eppig, J.J. & Schultz, R.M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–8.Google Scholar
Jurisicova, A., Varmuza, S. & Casper, R.F. (1996). Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 2, 93–8.Google Scholar
Kaneko, K.J., Cullinan, E.B., Latham, K.E. & DePamphilis, M.L. (1997). Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. Development 124, 1963–73.CrossRefGoogle ScholarPubMed
Kanka, J. (2003). Gene expression and chromatin structure in the preimplantation embryo. Theriogenology 59, 319.Google Scholar
Khosla, S., Dean, W., Brown, D., Reik, W. & Feil, R. (2001a). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–26.Google Scholar
Khosla, S., Dean, W., Reik, W. & Feil, R. (2001b). Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum. Reprod. Update 7, 419–27.Google Scholar
Kigami, D., Minami, N., Takayama, H. & Imai, H. (2003). MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68, 651–4.Google Scholar
Knijn, H.M., Gjorret, J.O., Vos, P.L., Hendriksen, P.J., Van Der Weijden, B.C., Maddox-Hyttel, P. & Dieleman, S.J. (2003). Consequences of in vivo development and subsequent culture on apoptosis, cell number, and blastocyst formation in bovine embryos. Biol. Reprod. 69, 1371–8.Google Scholar
Lane, M. & Gardner, D.K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–17.Google Scholar
Livak, K.J., Flood, S.J.A., Marmaro, J., Giusti, W. & Deetz, K. (1995). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic-acid hybridization. Genome Res. 4, 357–62.CrossRefGoogle ScholarPubMed
Magli, M. C., Gianaroli, L., Fiorentino, A., Ferraretti, A. P., Fortini, D. & Panzella, S. (1996). Improved cleavage rate of human embryos cultured in antibiotic-free medium. Hum. Reprod. 11, 1520–4.Google Scholar
Mann, M.R., Lee, S.S., Doherty, A.S., Verona, R.I., Nolen, L.D., Schultz, R.M. & Bartolomei, M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–35.CrossRefGoogle ScholarPubMed
Manuvakhova, M., Keeling, K. & Bedwell, D.M. (2000). Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6, 1044–55.CrossRefGoogle Scholar
McKieman, S.H. & Bavister, B.D. (1990). Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol. Reprod. 43, 404–13.Google Scholar
McKieman, S.H. & Bavister, B.D. (2000). Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum. Reprod. 15, 157–64.Google Scholar
Niemann, H. & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 2134.CrossRefGoogle ScholarPubMed
Olson, C.K., Keppler-Noreuil, K.M., Romitti, P.A., Budelier, W.T., Ryan, G., Sparks, A.E. & Van Voorhis, B.J. (2005). In vitro fertilization is associated with an increase in major birth defects. Fertil. Steril. 84, 1308–15.CrossRefGoogle ScholarPubMed
Paria, B.C. & Dey, S.K. (1990). Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87, 4756–60.CrossRefGoogle ScholarPubMed
Rizos, D., Gutierrez-Adan, A., Perez-Garnelo, S., De La Fuente, J., Boland, M.P. & Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–43.CrossRefGoogle ScholarPubMed
Schultz, R.M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–8.CrossRefGoogle ScholarPubMed
Schultz, R.M. & Williams, C.J. (2002). The science of ART. Science 296, 2188–90.CrossRefGoogle ScholarPubMed
Schultz, R.M. & Worrad, D.M. (1995). Role of chromatin structure in zygotic gene activation in the mammalian embryo. Semin. Cell Biol. 6, 201–8.Google Scholar
Schultz, R.M., Davis, W., Stein, P. & Svoboda, P. (1999). Reprogramming of gene expression during preimplantation development. J. Exp. Zool. 285, 276–82.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Stemp, G., Pascoe, S. & Gatehouse, D. (1989). In vitro and in vivo cytogenetic studies of three beta-lactam antibiotics (penicillin VK, ampicillin and carbenicillin). Mutagenesis 4, 439–45.CrossRefGoogle ScholarPubMed
Sturmey, R.G., Brison, D.R. & Leese, H.J. (2008). Assessing embryo viability by measurement of amino acid turnover. Reprod. Biomed. Online 17, 486–96.Google Scholar
Sturmey, R.G., Hawkhead, J.A., Barker, E.A. & Leese, H.J. (2009). DNA damage and metabolic activity in the preimplantation embryo. Hum. Reprod. 24, 8191.Google Scholar
Summers, M. & Biggers, J.D. (2003). Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum. Reprod. Update 9, 557–82.CrossRefGoogle ScholarPubMed
Suzuki, T., Minami, N., Kono, T. & Imai, H. (2006). Zygotically activated genes are suppressed in mouse nuclear transferred embryos. Cloning Stem Cells 8, 295304.CrossRefGoogle ScholarPubMed
Takenaka, M., Horiuchi, T. & Yanagimachi, R. (2007). Effects of light on development of mammalian zygotes. Proc. Natl. Acad. Sci. USA 104, 14289–93.CrossRefGoogle ScholarPubMed
Tang, S., Wang, Y., Zhang, D., Gao, Y., Ma, Y., Yin, B., Sun, J., Liu, J. & Zhang, Y. (2009). Reprogramming donor cells with oocyte extracts improves in vitro development of nuclear transfer embryos. Anim. Reprod. Sci. 115, 19.CrossRefGoogle ScholarPubMed
Vergouw, C.G., Botros, L.L., Roos, P., Lens, J.W., Schats, R., Hompes, P.G., Burns, D.H. & Lambalk, C.B. (2008). Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum. Reprod. 23, 1499–504.Google Scholar
Vinson, R.K. & Hales, B.F. (2002). DNA repair during organogenesis. Mutat. Res. 509, 7991.CrossRefGoogle ScholarPubMed
Watkins, A.J., Platt, D., Papenbrock, T., Wilkins, A., Eckert, J.J., Kwong, W.Y., Osmond, C., Hanson, M. & Fleming, T.P. (2007). Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl. Acad. Sci. USA 104, 5449–54.Google Scholar
Xie, Y., Wang, F., Zhong, W., Puscheck, E., Shen, H. & Rappolee, D.A. (2006). Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol. Reprod. 75, 4555.CrossRefGoogle ScholarPubMed
Zhou, H., McKiernan, S.H., Ji, W. & Bavister, B.D. (2000). Effect of antibiotics on development in vitro of hamster pronucleate ova. Theriogenology 54, 9991006.Google Scholar
Zhu, Y., Carroll, M., Papa, F.R., Hochstrasser, M. & D'Andrea, A.D. (1996). DUB-1, a deubiquitinating enzyme with growth-suppressing activity. Proc. Natl. Acad. Sci. USA 93, 3275–9.Google Scholar