Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:27:46.076Z Has data issue: false hasContentIssue false

Cryogenic preservation of embryos of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae)

Published online by Cambridge University Press:  01 February 2009

Alexandre Ninhaus-Silveira*
Affiliation:
Departamento de Biologia e Zootecnia – Universidade Estadual Paulista/Ilha Solteira, Av. Brasil, 56 – Centro Postal Box 31, CEP: 15385 – 000 Ilha Solteira, São Paulo, Brasil.
Fausto Foresti
Affiliation:
Universidade Estadual Paulista (UNESP) – Depto. de Morfologia – Botucatu – SP – Brasil.
Alexandre de Azevedo
Affiliation:
Universidade Federal do Rio de Janeiro (UFRJ) Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio Ambiental de Macaé (NUPEM) – Macaé – RJ – Brasil.
Cláudio Ângelo Agostinho
Affiliation:
Universidade Estadual Paulista (UNESP) – Depto. de Produção e Exploração Animal – Botucatu – SP – Brasil.
Rosicleire Veríssimo-Silveira
Affiliation:
Universidade Estadual Paulista (UNESP) – Depto. de Biologia e Zootecnia – Ilha Solteira – SP – Brasil.
*
All correspondence to: Alexandre Ninhaus-Silveira. Departamento de Biologia e Zootecnia – Universidade Estadual Paulista/Ilha Solteira, Av. Brasil, 56 – Centro Postal Box 31, CEP: 15385 – 000 Ilha Solteira, São Paulo, Brasil. Tel: +5518 3743 1285. Fax: +5518 3743 1186. e-mail: [email protected]

Summary

While the freezing techniques of mammal embryos have been providing promising results, the cryopreservation of teleostean eggs and embryos have remained unsuccessful up to now. Therefore, this work aimed to develop a procedure of cryogenic preservation of embryos of Prochilodus lineatus and to observe, at both structural and ultrastructural levels, the morphological alterations that took place after the application of freezing/thawing techniques. The embryos at the morula stage could not tolerate exposure to the cryoprotectants ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methanol, dimethyl sulphoxide and propylene glycol, presenting 100% of mortality. Embryos at the 4- to 6-somites stage tolerated exposure to propylene glycol and dimethyl sulphoxide, and the results revealed no significant differences (α = 0.05) regarding survival from both treatments. None of the freezing, thawing and hydration protocols was effective on preserving embryo viability. The ultrastructural analyses of frozen and thawed embryos showed that cells from ectoderm, somites, notochord and endoderm were structurally intact, with well preserved nuclei and mitochondria. The yolk globules were able to tolerate the freezing process, but the yolk syncytial layer was unorganized, displaying an electron-dense and compacted appearance, collapsed reticules, nuclei with modified chromatin and ruptures on the plasmatic membrane at the contact zone with endoderm. It might be concluded that the procedures tested for freezing were unable to avoid the formation of intracellular ice crystals, leading to drastic morphological modifications and making P. lineatus embryos unviable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, M.M., Raba, K.J., & McAndrew, B.J. (1995). The effect of temperature and chorion manipulation on the permeability of rosy barb and zebrafish embryos. Crvo-Lett. 16, 65.Google Scholar
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (1998). Effect of different concentrations of cryoprotectant and extender on the hatching of Indian major carp embryos (Labeo rohita, Catla catla, and Cirrhinus mrigala) stored at low temperature. Cryobiology 37, 318–24.CrossRefGoogle ScholarPubMed
Blaxter, J.H.S. (1953). Sperm storage and cross-fertilization of spring and autumn spawning herring. Nature 172, 1189–90.Google Scholar
Cabrita, E., Robles, , Luna, M.J. & Herraéz, M.P. (1999). Effect of different permeabilization agents on the penetration of DMSO in turbot embryos. Cryobiology 39, 346.Google Scholar
Cabrita, E., Robles, V., Chereguini, O., de Paz, P., Anel, L. & Herraéz, M.P. (2003). Dimethyl sulfoxide influx in turbot embryos exposed to a vitrification protocol. Theriogenology 8859, 111.Google Scholar
Carosfeld, J., Harvey, B., Fogli da Silveira, W., Kavamoto, E.T., Ramos, S.M. & Silveira, A. N. (1990). Criopreservação do sêmen do pacu, Piaractus mesopotâmicus Holmberg, 1887. Bol. Tec. CEPTA 3, 14.Google Scholar
Chao, N.H., Lin, T.T., Chen, Y-J., Hsu, H-W & Liao, I-C. (1997). Cryopreservation of late embryos and early larvae in the oyster and hard clam. Aquaculture 155, 3144.CrossRefGoogle Scholar
Corrêa e Castro, R.M. 1990. Revisão taxonômica da família Prochilodontidae (Ostariophysi: Characiformes). São Paulo: USP, (1990). Tese (Doutorado em Ciências), Instituto de Biociências, Universidade de São Paulo.Google Scholar
Dinnyés, A., Urbányi, B., Baranyai, B. & Magary, I. (1998). Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50, 113.CrossRefGoogle ScholarPubMed
Erdahl, A.W., Erdahl, D.A. & Graham, E.E. (1984). Some factors affecting the preservation of salmonid spermatozoa. Aquaculture 43, 341–50.CrossRefGoogle Scholar
Fogli da Silveira, W., Kavamoto, E.T., Cestarolli, M.A., Godinho, H.M., Ramos, S.M. & Silveira, A.N. (1990). Avaliação espermática, preservação criogênica e fertilidade do sêmen do pacu, Piaractus mesopotâmicus (Holmberg, 1887), proveniente de reprodução induzida. B. Inst. Pesca 17, 113.Google Scholar
Fowler, H.W. (1954). Os peixes de água doce do Brasil. Arq. Zool. 2, 1400.Google Scholar
Haga, Y. (1982). On the subzero temperature preservation of fertilized eggs of rainbow trout. Bull. Jpn. Soc. Sci. Fish 48, 1569–72.Google Scholar
Hagedorn, M., Hsu, E., Pilatus, U., Wildt, D.E., RalI, W.F. & Blackband, S.J. (1996). Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. Proc. Natl. Acad. Sci. USA 93, 7454–9.CrossRefGoogle Scholar
Hagedorn, M., Kleinhans, E.W., Wildt, D.E. & Rall, W.E. (1997). Chilling sensitivity and cryoprotectant permeability of dechorionated zebra fish embryos, Braclrydanio rerio. Cryobiology 34, 251–63.CrossRefGoogle ScholarPubMed
Hagedorn, M., Kleinhans, E.W., Artemov, D. & Pilatus, U. (1998). Characterization of a major permeability barrier in the zebrafish embryo. Biol. Reprod. 59, 1240–50.Google Scholar
Hagedorn, M., Lance, S.L., Fonseca, D.M., Kleinhans, F.W., Artemov, D., Fleischer, R., Hoque, A.T.M.S., Hamilton, M.B. & Pukahenthi, B.S. (2002). Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol. Reprod. 67, 961–6.Google Scholar
Harvey, B. (1983). Cooling of embryonic cells, isolated blastoderms and intact embryos of the zebrafish Brachydanio rerio to minus 196 °C. Cryobiology 20, 440–7.Google Scholar
Harvey, B. & Chamberlain, J.B. (1982). Water permeability in the developing embryo of the zebrafish, Brachydanio rerio. Can. J. Zool. 60, 268–70.CrossRefGoogle Scholar
Harvey, B., Kelley, R.N. & Ashwood-Smith, M.J. (1982). Cryopreservation of zebrafish spermatozoa using methanol. Can. J. Zool. 60, 1867–70.Google Scholar
Liu, X-H., Zhang, T. & Rawson, D.M. (1999). The effect of partial of yolk on the chilling sensivity of zebrafish (Danio rerio) embryos. Cryobiology 39, 236–42.CrossRefGoogle Scholar
Maisse, G., Labbé, C., Ogier de Baulny, B., Leveroni Calvi, S. & Haffray, P. (1998). Cryoconservation du sperm et des embryons de poissons. INRA Prod. Anim. 11 (1), 5765.CrossRefGoogle Scholar
Magyary, I., Dinnyés, A., Varkonyi, E., Szabo, R. & Varadi, L. (1995). Cryopreservation of fish embryos and embryonic cells. Aquaculture 137, 108.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F., Tabata, Y.A., Rigolino, M.G. & Veríssimo-Silveira, R. (2002). Cryopreservation of rainbow trout semen: diluent, straw and the vapour column. Boletim do Instituto de Pesca 28 (2), 135–9.Google Scholar
Ninhaus-Silveira, A., Foresti, A. & Azevedo, A. (2006a). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.CrossRefGoogle ScholarPubMed
Ninhaus-Silveira, A., Foresti, F., Veríssimo-Silveira & Senhorini, J.A. (2006b). Semen characterization, cryogenic preservation, and fertility in matrinxã fish, Brycon cephalus (Günther, 1860) (Teleostei; Characidae). Brazilian Archives of Biology and Technology 49 (3), 651–9.CrossRefGoogle Scholar
Polge, C., Smith, A.U., & Parkers, A.S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666.CrossRefGoogle ScholarPubMed
Rall, W.F. (1993). Recent advances in the cryopreservation of salmonid fishes. In: Genetic Conservation of Salmonid Fishes (Cloud, J.G. & Thorgaard, G.H., eds.), Plenum, New York pp. 137–58.CrossRefGoogle Scholar
Reynolds, E.S. (1963). The use of lead citrate at high pH an electron-opaque stain for electron microscopy. J. Cell Biol. 17, 208–15.CrossRefGoogle ScholarPubMed
Ribeiro, R.I.M.A. & Godinho, H.P. (2003). Testicular sperm cryopreservation of the teleost “piau-açu,” Leporinus macrocephalus. Arq. Bras. Med. Vet. Zoot. 55 (1), 19.Google Scholar
Robles, V., Cabrita, E., Real, M., Álvarez, R. & Hérraez, M.P. (2003). Vitrification of turbot embryos: preliminary assays. Cryobiology 47, 30–9.Google Scholar
Stoss, J. & Donaldson, E.M. (1983). Studies on cryopreservation of eggs from rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch). Aquaculture 31, 5165.Google Scholar
Suzuki, T., Komada, H., Takai, R., Keiji, A. & Kozima, T.T. (1995). Relation between toxicity of cryoprotectant DMSO and its concentration in several fish embryos. Fish. Sci. 61 (2), 193–7.Google Scholar
Urbanyi, B., Baranyai, B., Magyary, I. & Dinnyés, A. (1997). Toxicity of methanol, DMSO and glycerol on carp (Cyprinus carpio) embryos in different developmental stages. Theriogenology 47, 408.CrossRefGoogle Scholar
Urbanyi, B., Baranyai, B. & Dinnyés, A.T. (1998). Chilling sensivity of non-activated carp (Cyprinus carpio) eggs. Theriogenology 48, 175.CrossRefGoogle Scholar
Watson, M.L. (1958). Staining of tissue sections for electron microscopy witch heavy metals. J. Biophys. Biochem. Cytol. 4, 58.CrossRefGoogle Scholar
Watson, P.F. & Holt, W.V. (2001). Cryobanking the Genetic Resource. Wildlife Conservation for the Future? London & New York, Taylor & Francis. 463 pp.Google Scholar
Westerfield, M. (1993). The Zebrafish Book. A Guide for the Laboratory use of Zebrafish (Brachidanio rerio). University of Oregon Press, Eugene, Oregon.Google Scholar
Whittingham, D. & Rosenthal, H. (1978). Attempts to preserve herring embryos at subzero temperatures. Arch. Fischereiwiss 29, 75–9.Google Scholar
Wowk, B., Darwin, M., Harris, S.B., Russel, S.R. & Rasch, C.M. (1999). Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions. Cryobiology 39, 215–27.CrossRefGoogle ScholarPubMed
Zell, S.R. (1978). Cryopreservation of gametes and embryos of salmonid fishes. Ann. Biol. Anim. Biochem. Biophys. 18, 1089–99.Google Scholar
Zhang, T. & Rawson, D.M. (1995). Studies on chilling sensitivity on zebrafish (Brachydanio rerio) embryos. Cryobiology 32, 239–46.CrossRefGoogle Scholar
Zhang, T.T. & Rawson, D.M. (1996). Feasibility studies on vitrification of intact zebrafish (Brachydanio rerio) embryos. Cryobiology 33, 113.CrossRefGoogle Scholar
Zhang, T.T. & Rawson, D.M. (1998). Permeability of the vitelline membrane of l-cell and 6-somite stage zebrafish (Brachydanio rerio) embryos to water and methanol. Cryobiology 37, 1321.CrossRefGoogle Scholar
Zhang, T., Rawson, D.M. & Morris, J.G. (1993). Cryopreservation of pre-hatch embryos of zebrafish (Brachidanio rerio). Aquat. Living. Resour. 6, 145–53.Google Scholar