Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:24:43.788Z Has data issue: false hasContentIssue false

Characterisation and role of integrins during gametic interaction and egg activation

Published online by Cambridge University Press:  26 September 2008

Céline de Nadai
Affiliation:
Faculté de Médecine, Nice, France, and Hopkins Marine Station, Stanford, California, USA.
Patrick Fenichel
Affiliation:
Faculté de Médecine, Nice, France, and Hopkins Marine Station, Stanford, California, USA.
Michèle Donzeau
Affiliation:
Faculté de Médecine, Nice, France, and Hopkins Marine Station, Stanford, California, USA.
David Epel
Affiliation:
Faculté de Médecine, Nice, France, and Hopkins Marine Station, Stanford, California, USA.
Brigitte Ciapa*
Affiliation:
Faculté de Médecine, Nice, France, and Hopkins Marine Station, Stanford, California, USA.
*
B. Ciapa, Groupe de Recherche Sur l'Interaction Gamétique, Faculté de Médecine, Avenue de Valombrose, F-06107 Nice Cedex 02, France.

Summary

It has recently been proposed that some of the processes induced by fertilisation in mammals may be mediated by integrins. By peforming immunofluorescence labelling and Western blots with antibodies directed against some of the α and β subunits of integrins, we show here the presence of some of these proteins in human and hamster oocytes. Among them, α2 and α5 were also present on in vitro preparations of sea urchin egg cortices. In addition, antibodies raised against these two proteins were the most effective at inhibiting attachment and fusion of human spermatozoa with hamster oocytes. We suggest that α2 and α5 integrin chains may be common mediators in adhesion-fusion mechanisms triggered by fertilisation. Using similar techniques, we show that eggs are rich three cytoskeletal proteins known to be linked to the β chain of integrins: talin, vinculin and α-actinin. Moreover, we found that talin and α-actinin were associated with proteins phosphorylated on tyrosine after fertilisation in sea urchin eggs. We suggest that integrins might be involved during fertilisation and trigger egg activation through cytoskeletal structures.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allemand, D.,Ciapa, B., & De, Renzis G. (1987). Effect of cytochalasin B on the development of membrane transports in sea urchin eggs after fertilization. Dev. Growth Differ. 29, 333–40.CrossRefGoogle ScholarPubMed
Almeida, E.A.C., Huovila, A.-P.J., Sutherland, A.E., Stephens, L.E., Calarco, P.G., Shaw, L.M., Mercurio, A.M., Sonnenberg, A., Primakoff, P., Mules, D.G., White, J.M. (1995). Mouse egg integrin α6β1 functions as a sperm receptor. Cell 81, 1095–104.CrossRefGoogle ScholarPubMed
Berger, F. (1992). Mechanisms of initiation and propagation of the calcium wave during fertilization in deuterostomes. Int. J. Dev. Biol. 36, 245–62.Google Scholar
Blobel, C.P., Wolfsberg, T.G., Turck, C.W., Myles, D.G., Primakoff, P., White, J.M. (1992). A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356, 248–52.CrossRefGoogle Scholar
Bronson, R.A., Fusi, F.M. (1990). Evidence that an Arg-Gly-Asp adhesion sequence plays a role in mammalian fertilization. Biol. Reprod. 43, 1019–25.CrossRefGoogle Scholar
Bronson, R.A., Fleit, H.B., Fusi, F.M. (1990). Identification of an oolemmal Fc receptor: its role in promoting binding of antibody-labelled human sperm to Zona-free hamster eggs. Am. J. Reprod. Immunol. 23, 8792.CrossRefGoogle ScholarPubMed
Cipa, B., Epel, D. (1991). A rapid change in phosphorylation of tyrosine accompanies fertilization of sea urchin eggs. FEBS Lett. 295, 167–70.CrossRefGoogle Scholar
Ciapa, B., Allemand, D., Payan, P. (1989). Cortical modifications induced by TPA in sea urchin egg. Exp. Cell Res. 185, 407–18.CrossRefGoogle Scholar
Ciapa, B., Borg, B., & Epel, D. (1991). Polyphosphoinositides, tyrosine kinase and sea urchin activation. In Biology of Echinodermata, ed. Yanagisawa, X. et al. pp. 4150. Rotterdam: Balkema Press.Google Scholar
Epel, D. (1989). Linkages of transport, calcium and pH to sea urchin egg arousal and fertilization. In Mechanism of Egg Activation, ed. Nuccitelli, R. et al. , pp. 271–84. New York: Plenum Press.CrossRefGoogle Scholar
Fishkind, D.J., Bonder, E.M., Begg, D.A. (1990). Subcellular localisation of sea urchin egg spectrin: evidence for the assembly of the membrane-skeleton on unique classes of vesicules in eggs and embryos. Dev. Biol. 142, 439–52.CrossRefGoogle Scholar
Foltz, K.R., & Lennarz, W.J. (1993). The molecular basis of sea urchin gamete interactions at the egg plasma membrane. Dev. Biol. 158, 4661.CrossRefGoogle ScholarPubMed
Foltz, K.R., Partin, J.S., Lennarz, W.J. (1993). Sea urchin egg receptor for sperm: sequence similarity of binding domain and hsp70. Science 259, 1421–5.CrossRefGoogle ScholarPubMed
Fusi, F.M., Vignali, M., & Bronson, R.A. (1992). Evidence for the presence of an integrin cell adhesion receptor on the oolemma of unfertilized human oocytes. Mol. Reprod. Dev. 31, 215–22.CrossRefGoogle ScholarPubMed
Fusi, F.M., Vignali, M., Gailit, J., & Bronson, R.A. (1993). Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemal integrins. Mol. Reprod. Dev. 36, 212–19.CrossRefGoogle ScholarPubMed
Glander, H.J., Herrmann, K., & Haustein, U.F. (1987). The equatorial fibronectin band (EFB) on human spermatozoa: a diagnostic help for male fertility? Andrologia 19, 456–9.CrossRefGoogle ScholarPubMed
Hamaguchi, Y., & Mabuchi, I. (1986). Alpha-actinin accumulation in the cortex of echinoderm eggs during fertilization. Cell Motil. Cytoskel. 6, 549–59.CrossRefGoogle Scholar
Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 1125.CrossRefGoogle ScholarPubMed
Jaffe, L.A. (1990). First messengers at fertilization. J. Reprod. Fert. Suppl. 42, 107–16.Google ScholarPubMed
Juliano, R.L., & Haskill, S. (1993). Signal transduction from the extracellular matrix. J. Cell Biol. 120, 577–85.CrossRefGoogle ScholarPubMed
Lehtonen, E., & Reima, I. (1986). Changes in the distribution of vinculin during preimplantation mouse development. Differentiation 32, 125–34.CrossRefGoogle ScholarPubMed
Luna, E.J., & Hitt, A.L. (1992). Cytoskeleton–plasma membrane interactions. Science 258, 955–64.CrossRefGoogle ScholarPubMed
Mabuchi, I., Hamaguchi, Y., Kobayashi, T., Hosoya, H., Tsukita, S., & Tsukita, S. (1985). Alpha-actinin from sea urchin eggs: biochemical properties, interaction with actin, and distribution in the cell during fertilization and cleavage. J. Cell Biol. 100, 375–83.CrossRefGoogle ScholarPubMed
Maro, B., Kubiak, J., Gueth, C., De Pennart, H., Houliston, E., Weber, M., Antony, C., & Aghion, J. (1990). Cytoskeleton organization during oogenesis, fertilization and preimplantation development of the mouse. Int. J. Dev. Biol. 34, 127–37.Google ScholarPubMed
Myles, D.G. (1993). Molecular mechanisms of sperm–egg membrane binding and fusion in mammals. Dev. Biol. 158, 3545.CrossRefGoogle ScholarPubMed
Myles, D.G., Kimmel, L.H., Blobel, C.P., White, J.W., & Primakoff, P. (1994). Identification of a binding site in the disintegrin domain of fertilin required for sperm–egg fusion. Proc. Natl. Acad. Sci. USA 91, 4195–8.CrossRefGoogle ScholarPubMed
Sardet, C., & Chang, P. (1987). The egg cortex: from maturation through fertilization. J. Cell Differ. 21, 119.CrossRefGoogle ScholarPubMed
Sastry, S.K., & Horwitz, A.F. (1993). Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra and intracellular initiated transmembranane signaling. Curr. Opin. Cell Biol. 5, 819–31.CrossRefGoogle ScholarPubMed
Schaller, M.D., & Parsons, T. (1994). Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol. 6, 705–10.CrossRefGoogle ScholarPubMed
Schaller, M.D., Glander, H.J., & Dethloff, J. (1993). Evidence of β1 integrins and fibronectin on spermatogenic cells in human testis. Hum. Reprod. 8, 1873–8.CrossRefGoogle ScholarPubMed
Ticchioni, M., Decker, M., Bernard, G., Calandra, D., Breitt-meyer, J.P., Imbert, V., Peyron, J.F., & Bernard, A. (1995). Comitogenic effects of very late activation antigens on CD3-stimulated human thymocytes. J. Immunol. 154, 1207–15.CrossRefGoogle ScholarPubMed
Vacquier, V.D. (1981). Dynamic changes of the egg cortex. Dev. Biol. 84, 126.CrossRefGoogle ScholarPubMed
Wassarman, P.M. (1987). The biology and chemistry of fertilization. Science 235, 553–60.CrossRefGoogle ScholarPubMed
Weiss, A. (1993). T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73, 209–12.CrossRefGoogle ScholarPubMed
Whitaker, M.J., & Swann, K. (1993). Lighting the fuse at fertilization. Development 117, 112.CrossRefGoogle Scholar