Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:17:08.098Z Has data issue: false hasContentIssue false

Cell cycle synchronization of canine ear fibroblasts for somatic cell nuclear transfer

Published online by Cambridge University Press:  01 February 2009

Ok Jae Koo
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
Mohammad Shamim Hossein
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
So Gun Hong
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
Jose A. Martinez-Conejero
Affiliation:
Fundacion IVI, Instituto Universitario IVI, Valencia University, Valencia, Spain.
Byeong Chun Lee*
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151–742, Korea.
*
All correspondence to: Byeong Chun Lee. Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151–742, Korea. Tel: +822 880 1269. Fax: +822 873 1269. e-mail: [email protected]

Summary

Cycle synchronization of donor cells in the G0/G1 stage is a crucial step for successful somatic cell nuclear transfer. In the present report, we evaluated the effects of contact inhibition, serum starvation and the reagents – dimethyl sulphoxide (DMSO), roscovitine and cycloheximide (CHX) – on synchronization of canine fibroblasts at the G0/G1 stage. Ear fibroblast cells were collected from a beagle dog, placed into culture and used for analysis at passages three to eight. The population doubling time was 36.5 h. The proportion of G0/G1 cells was significantly increased by contact inhibition (77.1%) as compared with cycling cells (70.1%); however, extending the duration of culture did not induce further synchronization. After 24 h of serum starvation, cells were effectively synchronized at G0/G1 (77.1%). Although synchronization was further increased gradually after 24 h and even showed significant difference after 72 h (82.8%) of starvation, the proportion of dead cells also significantly increased after 24 h. The percentage of cells at the G0/G1 phase was increased (as compared with controls) after 72 h treatment with DMSO (76.1%) and after 48 h treatment with CHX (73.0%) or roscovitine (72.5%). However, the rate of cell death was increased after 24 and 72 h of treatment with DMSO and CHX, respectively. Thus, we recommend the use of roscovitine for cell cycle synchronization of canine ear fibroblasts as a preparatory step for SCNT.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boquest, A.C., Day, B.N. & Prather, R.S. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod. 60, 1013–9.CrossRefGoogle ScholarPubMed
Campbell, K.H., Loi, P., Otaegui, P.J. & Wilmut, I. (1996). Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1, 40–6.CrossRefGoogle ScholarPubMed
Cho, J.K., Lee, B.C., Park, J.I., Lim, J.M., Shin, S.J., Kim, K.Y., Lee, B.D. & Hwang, W.S. (2002). Development of bovine oocytes reconstructed with different donor somatic cells with or without serum starvation. Theriogenology 57, 1819–28.CrossRefGoogle ScholarPubMed
Cibelli, J.B., Stice, S.L., Golueke, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de Leon, F.A. & Robl, J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–8.CrossRefGoogle ScholarPubMed
Gibbons, J., Arat, S., Rzucidlo, J., Miyoshi, K., Waltenburg, R., Respess, D., Venable, A. & Stice, S. (2002). Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol. Reprod. 66, 895900.CrossRefGoogle ScholarPubMed
Goissis, M.D., Caetano, H.V., Marques, M.G., de Barros, F.R., Feitosa, W.B., Milazzotto, M.P., Binelli, M., Assumpcao, M.E. & Visintin, J.A. (2007). Effects of serum deprivation and cycloheximide on cell cycle of low and high passage porcine fetal fibroblasts. Reprod. Domest. Anim. 42, 660–3.CrossRefGoogle ScholarPubMed
Gomez, M.C., Jenkins, J.A., Giraldo, A., Harris, R.F., King, A., Dresser, B.L. & Pope, C.E. (2003). Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes. Biol. Reprod. 69, 1032–41.CrossRefGoogle ScholarPubMed
Hashem, M.A., Bhandari, D.P., Kang, S.K., Lee, B.C. & Suk, H.W. (2006). Cell cycle analysis of in vitro cultured goral (Naemorhedus claudatus) adult skin fibroblasts. Cell. Biol.Int. 30, 698703.CrossRefGoogle Scholar
Hashem, M.A., Bhandari, D.P., Kang, S.K. & Lee, B.C. (2007). Cell cycle analysis and interspecies nuclear transfer of in vitro cultured skin fibroblasts of the Siberian tiger (Panthera tigris Altaica). Mol. Reprod. Dev. 74, 403–11.CrossRefGoogle ScholarPubMed
Hill, J.R., Roussel, A.J., Cibelli, J.B., Edwards, J.F., Hooper, N.L., Miller, M.W., Thompson, J.A., Looney, C.R., Westhusin, M.E., Robl, J.M. & Stice, S.L. (1999). Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51, 1451–65.CrossRefGoogle ScholarPubMed
Hinrichs, K., Choi, Y.H., Love, C.C., Chung, Y.G. & Varner, D.D. (2006). Production of horse foals via direct injection of roscovitine-treated donor cells and activation by injection of sperm extract. Reproduction 131, 1063–72.CrossRefGoogle ScholarPubMed
Hinrichs, K., Choi, Y.H., Varner, D.D. & Hartman, D.L. (2007). Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 134, 319–25.CrossRefGoogle ScholarPubMed
Holker, M., Petersen, B., Hassel, P., Kues, W.A., Lemme, E., Lucas-Hahn, A. & Niemann, H. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning Stem Cells 7, 3544.CrossRefGoogle ScholarPubMed
Hossein, M.S., Kim, M.K., Jang, G., Fibrianto, H.Y., Oh, H.J., Kim, H.J., Kang, S.K. & Lee, B.C. (2007). Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes. Anim. Reprod. Sci. 99, 330–41.CrossRefGoogle ScholarPubMed
Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J., Jr., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D. & Brown, P.O. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–7.CrossRefGoogle ScholarPubMed
Jang, G., Kim, M.K., Oh, H.J., Hossein, M.S., Fibrianto, Y.H., Hong, S.G., Park, J.E., Kim, J.J., Kim, H.J., Kang, S.K., Kim, D.Y. & Lee, B.C. (2007). Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67, 941–7.CrossRefGoogle ScholarPubMed
Jang, G., Hong, S.G., Oh, H.J., Kim, M.K., Park, J.E., Kim, H.J., Kim, D.Y. & Lee, B.C. (2008a). A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 69, 556–63.CrossRefGoogle ScholarPubMed
Jang, G., Oh, H.J., Kim, M.K., Fibrianto, Y.H., Hossein, M.S., Kim, H.J., Kim, J.J., Hong, S.G., Park, J.E., Kang, S.K. & Lee, B.C. (2008b). Improvement of canine somatic cell nuclear transfer procedure. Theriogenology 69, 146–54.CrossRefGoogle ScholarPubMed
Jiang, H., Lin, J., Su, Z.Z., Collart, F.R., Huberman, E. & Fisher, P.B. (1994). Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9, 3397–406.Google ScholarPubMed
Johnson, D.G. & Walker, C.L. (1999). Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295312.CrossRefGoogle ScholarPubMed
Kasinathan, P., Knott, J.G., Wang, Z., Jerry, D.J. & Robl, J.M. (2001). Production of calves from G1 fibroblasts. Nat. Biotechnol. 19, 1176–8.CrossRefGoogle ScholarPubMed
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H. & Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–8.CrossRefGoogle ScholarPubMed
Khammanit, R., Chantakru, S., Kitiyanant, Y. & Saikhun, J. (2008). Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts. Theriogenology 70, 2734.CrossRefGoogle ScholarPubMed
Kues, W.A., Anger, M., Carnwath, J.W., Paul, D., Motlik, J. & Niemann, H. (2000). Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62, 412–9.CrossRefGoogle ScholarPubMed
Lee, B.C., Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hossein, M.S., Kim, J.J., Kang, S.K., Schatten, G. & Hwang, W.S. (2005a). Dogs cloned from adult somatic cells. Nature 436, 641.CrossRefGoogle ScholarPubMed
Lee, G.S., Kim, H.S., Hyun, S.H., Lee, S.H., Jeon, H.Y., Nam, D.H., Jeong, Y.W., Kim, S., Kim, J.H., Han, J.Y., Ahn, C., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005b). Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology 63, 973–91.CrossRefGoogle ScholarPubMed
Okuda, A. & Kimura, G. (1988). Non-specific elongation of cell cycle phases by cycloheximide in rat 3Y1 cells, and specific reduction of G1 phase elongation by simian virus 40 large T antigen. J. Cell Sci. 91, 295302.CrossRefGoogle ScholarPubMed
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–90.CrossRefGoogle ScholarPubMed
Pennisi, E. (2000). Profits from precious pets. Science 288, 1726.CrossRefGoogle ScholarPubMed
Pines, J. (1995). Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308, 697711.CrossRefGoogle ScholarPubMed
Ponzio, G., Loubat, A., Rochet, N., Turchi, L., Rezzonico, R., Farahi Far, D., Dulic, V. & Rossi, B. (1998). Early G1 growth arrest of hybridoma B cells by DMSO involves cyclin D2 inhibition and p21[CIP1] induction. Oncogene 17, 1159–66.CrossRefGoogle Scholar
Sherr, C.J. & Roberts, J.M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–63.CrossRefGoogle ScholarPubMed
Sun, X., Wang, S., Zhang, Y., Wang, H., Wang, L., Ying, L., Li, R. & Li, N. (2008). Cell-cycle synchronization of fibroblasts derived from transgenic cloned cattle ear skin: effects of serum starvation, roscovitine and contact inhibition. Zygote 16, 111–6.CrossRefGoogle ScholarPubMed
Suzuki, E., Nagata, D., Yoshizumi, M., Kakoki, M., Goto, A., Omata, M. & Hirata, Y. (2000). Reentry into the cell cycle of contact-inhibited vascular endothelial cells by a phosphatase inhibitor. Possible involvement of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 3637–44.CrossRefGoogle ScholarPubMed
Verbin, R.S. & Farber, E. (1967). Effect of cycloheximide on the cell cycle of the crypts of the small intestine of the rat. J. Cell Biol. 35, 649–58.CrossRefGoogle ScholarPubMed
Vignon, X., Chesne, P., Le Bourhis, D., Flechon, J.E., Heyman, Y. & Renard, J.P. (1998). Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells. C R Acad. Sci. III 321, 735–45.CrossRefGoogle ScholarPubMed
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.CrossRefGoogle ScholarPubMed
Wells, D.N., Laible, G., Tucker, F.C., Miller, A.L., Oliver, J.E., Xiang, T., Forsyth, J.T., Berg, M.C., Cockrem, K., L'Huillier, P.J., Tervit, H.R. & Oback, B. (2003). Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59, 4559.CrossRefGoogle ScholarPubMed
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. (2007). Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells 9, 37.CrossRefGoogle ScholarPubMed