Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T20:04:47.246Z Has data issue: false hasContentIssue false

Brycon gouldingi (Teleostei, Characidae): aspects of the embryonic development in a new fish species with aquaculture potential

Published online by Cambridge University Press:  21 December 2010

Francine Faustino*
Affiliation:
Departamento de Morfologia e Fisiologia Animal – Faculdade de Ciências Agrárias e Veterinárias – São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, ZIP code-14884–900, Jaboticabal–SP, Brazil. Aquaculture Center of UNESP (CAUNESP), Jaboticabal, São Paulo, Brazil.
Laura Satiko Okada Nakaghi
Affiliation:
Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University (FCAV/UNESP), Jaboticabal, São Paulo, Brazil. Aquaculture Center of UNESP (CAUNESP), Jaboticabal, São Paulo, Brazil.
Erika Neumann
Affiliation:
Piscicultura Buriti, Nova Mutum - Mato Grosso, Brazil.
*
All correspondence to: Francine Faustino. Departamento de Morfologia e Fisiologia Animal – Faculdade de Ciências Agrárias e Veterinárias – São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, ZIP code-14884–900, Jaboticabal–SP, Brazil. Tel:/Fax: +55 16 3209 2654 (ext. 232). e-mail: [email protected]

Summary

Brycon gouldingi is an endemic species from Tocantins-Araguaia basin, used as a food source by riverine communities and relevant to aquaculture. Information about the initial morphology of B. gouldingi, a recently described species, is absent. In the present study, we analysed the fertilization and the embryonic development of this species based on light and scanning electron microscopy. After collection of adult specimens in Mortes River – Mato Grosso, Brazil, adaptation to captivity and induced spawning at Buriti Fishculture, Nova Mutum – Mato Grosso, Brazil, in December 2007 and January 2008, samples were collected at pre-defined periods from egg extrusion up to larval hatching, which occurred at 13.9 ± 0.06 h post-fertilization (hpf) in average. At the moment of extrusion, the eggs were slightly ovoid bearing a single micropyle per oocyte with a funnel-shaped micropyle canal and vestibule covered with longitudinal folds, typical of the genus Brycon. The embryonic development of B. gouldingi was characterized by six stages with distinct features: zygote (from fertilization up to formation of egg-cell); cleavage (cell divisions resulting in blastomeres, including the morula phase); blastula (several embryonic cells in a cup shape, without distinction of cell boundaries); gastrula (cell movement); histogenesis/organogenesis (formation of tissues and organs); and hatching (larval chorion rupture). Right after hatching, the larvae presented neither swimming abilities nor visual accuracy, and the digestive trait was undifferentiated. The present study is the first report on biological features of embryogenesis in B. gouldingi, providing relevant information to several approaches, mainly related to taxonomy, ecology, conservation and captive rearing of this new Brycon species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, M.O., Bezerra e Silva, J.W. & Kóvacs, G. (1994). Sobre o desenvolvimento do ovo e embrião do tambaqui, Colossoma macropomum Cuvier, 1818. B. Téc. DNOCS 47/52, 001∓97.Google Scholar
Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001). Embryonic and larval development of the “piabanha”, Brycon insignis Steindachner, 1876 (Pisces, Characidae). Bol. Inst. Pesca 27, 21–7.Google Scholar
Balinsky, B.I. (1970). An Introduction to Embryology. Philadelphia: W. B. Saunders. 353 pp.Google Scholar
Borçato, F.L., Bazzoli, N. & Sato, Y. (2004). Embryogenesis and larval ontogeny of the “piau-gordura”, Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev. Bras. Zool. 21, 117–22.CrossRefGoogle Scholar
Britski, H.A., Silimon, K.S.S. & Lopes, B.S. (1999). Peixes do Pantanal: Manual de Identificação. Brasília: EMBRAPA – SPI.Google Scholar
Cardoso, E.L., Alves, M.S.D., Ferreira, R.M.A. & Godinho, H.P. (1995). Embryogenesis of the neotropical freshwater Siluriforme Pseudoplatystoma coruscans. Aquat. Living Res. 8, 343–6.CrossRefGoogle Scholar
Castagnolli, N. (1992). Criação de Peixes de Agua doce. Jaboticabal: FUNEP. 189 pp.Google Scholar
Castellani, L.R., Tse, H.G., Santos, H.S., Faria, R.H.S. & Santos, M.L.S. (1994). Desenvolvimento embrionário do curimbatá Prochilodus lineatus (Valenciennes, 1836) (Cypriniformes, Prochilodontidae). Rev. Bras. Ciênc. Morfol. 11, 99105.Google Scholar
Chen, K.C., Shao, K.T. & Yang, J.S. (1999). Using micropilar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J. Fish Biol. 55, 288300.CrossRefGoogle Scholar
Depêche, J. & Billard, R. (1994). Embryology in Fish: A Review. Paris: Société Française d'Ichtyologie. 123 pp.Google Scholar
Falk-Petersen, I.B. (2005). Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol. 19, 397412.Google Scholar
Faustino, F., Nakaghi, L.S.O., Marques, C., Makino, L. & Senhorini, J.A. (2007). Fertilização e desenvolvimento embrionário: morfometria e análise estereomicroscópica dos ovos dos híbridos de surubins (pintado, Pseudoplatystoma corruscans × cachara, Pseudoplatystoma fasciatum). Acta Sci. 29, 4955.Google Scholar
Ganeco, L.N. & Nakaghi, L.S.O. (2003). Morfologia da micrópila e da superfície de ovócitos de piracanjuba, Brycon orbignyanus (Osteichhes, Characidae), sob microscopia eletrônica de varredura. Acta Sci. 25, 227–31.Google Scholar
Ganeco, L.N., Franceschini-Vicentini, I.B. & Nakaghi, L.S.O. (2008). Structural analysis of fertilization in the fish Brycon orbignyanus, Zygote 17, 93–9.Google Scholar
Gilbert, S.F. (2003). Biologia do Desenvolvimento. Quinta edição. Ribeirão Preto: FUNPEC, 962 pp.Google Scholar
Godinho, H.M., Fenerich, N.A. & Narahara, M.Y. (1978). Developing of embryos and larvae of Rhamdia hilarii (Valenciennes, 1840) (Siluriformes, Pimelodidae). Rev. Bras. Biol. 38, 151–6.Google Scholar
González-Doncel, M., Okihiro, M.S., Villalobos, S.A., Hinton, D.E. & Tarazona, J.V. (2005). A quick reference guide to the normal development of Oryzias latipes (Teleostei, Adrianichthyidae). J. Appl. Ichthyol. 21, 3952.CrossRefGoogle Scholar
Hall, T.E., Smith, P. & Johnston, I.A. (2004). Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morphol. 259, 255–70.Google Scholar
Howes, G. (1982). Review of the genus Brycon (Teleostei, Characoidei). Bull. Brit. Mus. Nat. Hist. (Zool.) 43, 147.Google Scholar
Hu, N., Sedmera, D., Post, H.J. & Clark, E.B. (2000). Structure and function of the developing zebrafish heart. Anat. Rec. 260, 148–57.Google Scholar
IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Listas de Espécies Aquáticas Ameaçadas de Extinção. Disponível em: http://www.ibama.gov.br/recursos-pesqueiros/wp-content/files/list_extincao.pdf. Acesso em: 22 jul. 2009.Google Scholar
Iwamatsu, T. (2000). Fertilization in fishes. In Fertilization in Protozoa and Metazoa Animals (eds. Tarin, J.J. & Cano, A.), pp. 89145. Heidelberg: Springer-Verlag Berlin.Google Scholar
Iwamatsu, T. & Ohta, T. (1981). Scanning electron microscopic observation on sperm penetration in teleostean fish. J. Exp. Biol. 218, 261–77.Google Scholar
Junk, W.J. & Nunes De Mello, J.A.S. (1990). Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira. Estudos avançados 4, 126–43.Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R. & Ullmann, B. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.Google Scholar
Kudo, S. (1980). Sperm penetration and the formation of a fertilization cone in the common carp egg. Dev. Growth Diff. 22, 403–14.Google Scholar
Laale, W.H. (1980). The perivitelline space and egg envelopes of bony fishes: a review. Copeia 2, 210–26.CrossRefGoogle Scholar
Landinez, M.A., Senhorini, J.A., Sanabria, A.I., Baldan, A.P. & Urbinati, E.C. (2004). Desenvolvimento embrionário e larval de piracanjuba (Brycon orbignyanus). Bol. Tec. CEPTA 17, 112.Google Scholar
Langeland, J.A. & Kimmel, C.B. (1997). Fishes. In Embryology. Constructing the Organism (eds. Gilbert, S.F. & Raunio, A.M.), pp. 383407. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Leme dos Santos, H.S. & Azoubel, R. (1996). Embriologia Comparada. Jaboticabal: FUNEP. 189 pp.Google Scholar
Lima, F.C.T. (2004). Brycon gouldingi, a new species from the Rio Tocantins drainage, Brazil (Ostariophysi: Characiformes: Characidae), with a key to the species in the basin. Ichthyol. Explor. Freshwaters 15, 279–87.Google Scholar
Long, W.L. & Ballard, W.W. (1976). Normal embryonic stages of the white suckers, Catostomus commersoni. Copeia 2, 342–51.Google Scholar
Lopes, R.N.M., Senhorini, J.A. & Soares, M.C.F. (1995). Desenvolvimento embrionário e larval do matrinxã Brycon cephalus Günther, 1869, (Pisces, Characidae). Bol. Tec. CEPTA 8, 2539.Google Scholar
Luz, R.K., Reynalte-Tataje, D.A., Ferreira, A.A. & Zaniboni-Filho, E. (2001). Desenvolvimento embrionário e estágios larvais do mandi-amarelo Pimelodus maculatus. Bol. Inst. Pesca 27, 4955.Google Scholar
Maciel, C.M.R.R. (2006). Ontogenia de larvas de piracanjuba, Brycon orbignianus Valenciennes (1849) (Characiformes, Characide, Bryconinae). Tese (Doutorado em Zootecnia). Universidade Federal de Viçosa–UFV. Viçosa.Google Scholar
Marques, C. (2008). Análise histológica e de microscopia eletrônica do desenvolvimento inicial de jaú (Zungaro jahu) Dissertação (Mestrado em Aqüicultura). Centro de Aqüicultura, Universidade Estadual Paulista–UNESP: Jaboticabal.Google Scholar
Marques, C., Nakaghi, L.S.O., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2008). Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.Google Scholar
Matkovic, M., Cussac, V.E., Cukier, M., Guerrero, G.A. & Maggese, M.C. (1985). Desarrollo embrionario de Rhamdia sapo (Valencieness, 1840) Eigenmann y Eigenmann, 1888 (Pisces, Pimelodidae). I. Segmentación, morfogénesis y organogénesis temprana. Rev. Bras. Biol. 45, 149–60.Google Scholar
Morrison, C.M., Miyake, T. & Wright, J.R. Jr. (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus. J. Morphol. 247, 172–95.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Nakaghi, L.S.O., Marques, C., Faustino, F. & Senhorini, J.A. (2006). Desenvolvimento embrionário do dourado (Salminus brasiliensis) por meio de microscopia eletrônica de varredura. Bol. Tec. CEPTA 19, 919.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (2001). Ovos e larvas de Peixes de Agua Doce: Desenvolvimento e Manual de Identificação. Maringá: EDUEM/Nupélia, 359 pp.Google Scholar
Neumann, E. (2008). Desenvolvimento inicial de jatuarana, Brycon amazonicus (Teleostei, Characidae), Tese (Doutorado em Aquicultura), Centro de Aquicultura da Universidade Estadual Paulista–UNESP: Jaboticabal.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.CrossRefGoogle ScholarPubMed
Önal, U., Çelik, I. & Cirik, S. (2010). Histological development of digestive tract in discus, Symphysodon spp. larvae. Aquacult. Int. 18, 589601.Google Scholar
Reynalte-Tataje, D., Zaniboni-Filho, E. & Esquivel, J.R. (2004). Embryonic and larvae development of piracanjuba, Brycon orbignyanus Valenciennes, 1849 (Pisces, Characidae). Acta Sci. 26, 6771.Google Scholar
Ribeiro, C.R., Leme dos Santos, H.S. & Bolsan, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (pacu, Piaractus mesopotamicus; tambaqui, Colossoma macropomum e híbrido tambacu). Rev. Bras. Biol. 55, 6578.Google Scholar
Riehl, R. (1993). Surface morphology and micropyle as a tool for identifying fish eggs by scanning electron microscopy. Eur. Microsc. Anal. 5, 2931,Google Scholar
Rizzo, E. & Bazzoli, N. (1993). Oogenesis, oocyte surface and micropylar apparatus of Prochilodus affinis Reinhardt, 1874 (Pisces Characiformes). Eur. Arch. Biol. 104, 16.Google Scholar
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615–32.Google Scholar
Romagosa, E., Narahara, M.Y., Fenerich-Verani, N. (2001). Stages of embryonic development of the “matrinxã,” Brycon cephalus (Pisces, Characidae). Bol. Inst. Pesca 27, 2932.Google Scholar
Sampaio, K.H. (2006). Superfície Ovocitária e Desenvolvimento Inicial de Quatro Espécies de Peixes de Interesse Comercial da Bacia do Rio São Francisco. 53 pp. Dissertação (Mestrado em Biologia Celular). Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte.Google Scholar
Stickney, H.L., Barresi, M.J.F. & Devoto, S.H. (2000). Somite development in zebrafish. Dev. Dyn. 219, 287303.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Tolosa, E.M.G., Behmer, O.A. & Freitas Neto, A.G. (2003). Manual de Técnicas para Histologia Normal e Patológica. São Paulo: Edart, Edusp, 240 pp.Google Scholar
Warga, R.M. & Kimmel, C.B. (1990). Cell movements during epiboly and gastrulation in zebrafish. Development 108, 569–80.CrossRefGoogle ScholarPubMed
Wourms, J.P. & Evans, D. (1974). The embryonic development of the black prickleback, Xiphister atropurpureus, a Pacific Coast blennioid fish. Can. J. Zool. 2, 879–87.CrossRefGoogle Scholar
Woynarovich, E. & Horváth, L. (1983). A Propagação Artificial de Peixes de Aguas Tropicais: Manual de Extensão. Brasília: FAO/CODEVASF/CNPq. 225 pp.Google Scholar
Yelon, D. & Stainier, D.Y.R. (1999). Patterning during organogenesis: genetic analysis of cardiac chamber formation.Semin. Cell Dev. Biol. 10, 93–8.Google Scholar