Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T06:37:35.907Z Has data issue: false hasContentIssue false

Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes)

Published online by Cambridge University Press:  28 October 2009

Violeta da Rocha Perini
Affiliation:
Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil.
Yoshimi Sato
Affiliation:
Estação de Hidrobiologia e Piscicultura de Três Marias, Companhia de Desenvolvimento dos Vales do São Francisco e Parnaíba, P.O. Box 11, CEP: 39205-000, Três Marias, MG, Brasil.
Elizete Rizzo
Affiliation:
Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, P.O. Box 486, CEP: 30161-970, Belo Horizonte, MG, Brasil.
Nilo Bazzoli*
Affiliation:
Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil. Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil.
*
All correspondence to: N. Bazzoli. Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil. Tel: +55 31 33194936. Fax: +55 31 33194269. e-mail: [email protected]

Summary

The black armoured catfish Rhinelepis aspera is an important commercial species found in the São Francisco River (Brazil) that has great potential for pisciculture. This paper presents, for the first time, information on the embryogenesis and larval development of this species. The breeder fish were subjected to spawning induction with crude carp pituitary extract. Eggs were kept in incubators at 24°C and embryogenesis was observed with a stereomicroscope until hatching. Ovary fragments, samples of recently extruded oocytes and larvae were fixed in Bouin's solution and subjected to routine histology techniques. Recently extruded oocytes were also analyzed with a scanning electron microscope (SEM). Females (80%) had a positive response to hypophysation. Oocyte extrusion was performed at 8 h and 30 min after the second hormone injection and the fertilization rate achieved 72.4 ± 8.8%. Recently extruded oocytes had a mean diameter of 1360.80 ± 40.87 μm and presented a conspicuous jelly coat covering the zona pellucida. Histochemical reactions indicated the presence of neutral glycoproteins in the yolk globules and in the zona pellucida. These reactions also indicated the presence of neutral glycoproteins and carboxylated acid glycoconjugates in the follicular cells and the jelly coat. These compounds form mucosubstances that can be related to the adhesiveness of the eggs. Under the SEM the oocytes presented a micropyle disc and a thick jelly coat over their surface. The closure of the blastopore occurred 9 h and 40 min after fertilization and embryogenesis was completed at 45 h and 50 min after fertilization, when the embryos were incubated at 24°C. The total absorption of the yolk sac occurred during the fifth day indicating the need for an exogenous food supply. These results provide essential information for the successful breeding and management of the promising R. aspera.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, A.A., Barbieri, G., Verani, J.R. & Agostinho, C.S. (1986). Ciclo reprodutivo e primeira maturação de Rhinelepis aspera (Agassiz 1829), (Teleostei–Loricariidae) no rio Paranapanema. Rev. Unimar 8, 1727.Google Scholar
Amorim, M.P., Gomes, B.V.C., Martins, Y.S., Sato, Y., Rizzo, E. & Bazzoli, N. (2009). Early development of the silver catfish Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Heptapteridae) from the São Francisco River Basin, Brazil. Aquac. Res. 40, 172–80.CrossRefGoogle Scholar
Andrade, R.F., Bazzoli, N., Rizzo, E. & Sato, Y. (2001). Continuos gametogenesis in the neotropical freshwater teleost, Bryconops affinis (Pisces: Characidae). Tissue Cell 33, 524–32.CrossRefGoogle Scholar
Balon, E.K. (1977). Early ontogeny of Labeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on an advanced protective styles in fish reproduction and development. Environ. Biol. Fish. 2, 147–76.CrossRefGoogle Scholar
Borçato, F.L., Bazzoli, N. & Sato, Y. (2004). Embryogenesis and larval ontogeny of the “piau-gordura,” Leporinus piau (Fowler) (Pisces, Anostomidae) after induced spawning. Rev. Bras. Zool. 21, 117–22.CrossRefGoogle Scholar
Braat, A.K., Zandbergen, T., Van de Water, S., Goos, H.J.T. & Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dynam. 216, 153–67.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Flores, J.C.B., Araiza, M.A.F. & Valle, M.R.G. (2002). Desarrollo embrionário de Ctenopharyngodon idellus (Carpa herbívora). [online], CIVA 2002. http://www.civa2002.org/, pp. 792–7.Google Scholar
Gilbert, S.F. (1991). Developmental Biology. Sunderland, MA: Sinauer Associates.Google Scholar
Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M. & Brown, J.H. (2002). Effects of size and temperature on developmental time. Nature 417, 70–3.CrossRefGoogle ScholarPubMed
Godinho, H.M., Fenerich, N.A. & Narahara, M.Y. (1978). Desenvolvimento embrionário e larval de Rhamdia hilarii (Valenciennes, 1840) (Siluriformes, Pimelodidae). Rev. Bras. Biol. 38, 151–6.Google Scholar
Godinho, H.P., Santos, J.E. & Sato, Y. (2003). Ontogênese larval de cinco espécies de peixes do São Francisco. In Águas, peixes e pescadores do São Francisco das Minas Gerais (eds. Godinho, H.P. & Godinho, A.L.), pp. 133–48. Belo Horizonte: CNPq/PADCT, Editora PUC Minas.Google Scholar
Godinho, H.P. (2007). Estratégias reprodutivas de peixes aplicadas à aqüicultura: bases para o desenvolvimento de tecnologias de produção. Rev. Bras. Reprod. Anim. 31, 351–60.Google Scholar
Gomes, B.V.C., Scarpelli, R.S., Arantes, F.P., Sato, Y., Bazzoli, N. & Rizzo, E. (2007). Comparative oocyte morphology and early development in three species of trahiras from the São Francisco River basin, Brazil. J. Fish Biol. 70, 1412–29.CrossRefGoogle Scholar
Goodwin, N.B., Dulvy, N.K. & Reynolds, J.D. (2002). Life-history correlates of the evolution of live bearing in fishes. Phil. Trans. R. Soc. London 357, 259–67.CrossRefGoogle ScholarPubMed
Guimarães-Cruz, R.J., Santos, J.E., Sato, Y. & Veloso-Júnior, V.C. (2009). Early development stages of the catfish Lophiosilurus alexandri Steindachner, 1877 (Pisces: Pseudopimelodidae) from the São Francisco River basin, Brazil. J. Appl. Ichthyol. 25, 321–7.CrossRefGoogle Scholar
Hagedorn, M., Hsu, E.W., Pilatus, U., Wildt, D.E., Rall, W.F. & Blackband, S.J. (1996). Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. Proc. Natl. Acad. Sci. USA 93, 7454–9.CrossRefGoogle Scholar
Hagedorn, M., Kleinhans, E.W., Wildt, D.E. & Rall, W.E. (1997). Chill sensivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology 34, 251–63.CrossRefGoogle Scholar
Hall, T.E., Smith, P. & Johnston, I.A. (2004). Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morph. 259, 255–70.CrossRefGoogle ScholarPubMed
Kimmel, C.B., Ballard, W.W., Kimmel, S.R. & Ullmann, B. (1995). Stages of embryonic development of zebrafish. Dev. Dyn. 203, 253310.CrossRefGoogle Scholar
Kolm, N. & Ahnesjö, I. (2005). Do egg size and parental care coevolve in fishes? J. Fish Biol. 66, 1499–515.CrossRefGoogle Scholar
Leme dos Santos, H.S. & Azoubel, R. (1996). Embriologia comparada. Jaboticabal: FUNEP.Google Scholar
Luz, R.K., Reynalte-Tataje, D.A., Ferreira, A.A. & Zaniboni-Filho, E. (2001). Desenvolvimento embrionário e estágios larvais do mandi-amarelo Pimelodus maculatus. Bol. Inst. Pesca 27, 4955.Google Scholar
Marques, C., Nakaghi, L.S.O., Faustino, F., Ganeco, L.N. & Senhorini, J.A. (2008). Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes: Pimelodidae) under light and scanning electron microscopy. Zygote 16, 333–42.CrossRefGoogle ScholarPubMed
Meijide, F.J. & Guerrero, G.A. (2000). Embryonic and larval development of a substract-brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J. Zool. Lond. 252, 481–93.CrossRefGoogle Scholar
Nakatani, K., Agostinho, A.A., Baugartnet, G., Bialetzki, A., Sanches, P.V., Makrakis, M.C. & Pavanelli, C.S. (2001). Ovos e Larvas de Peixes de Água Doce–Desenvolvimento e Manual de Identificação. Maringá: UEM, Nupélia.Google Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontinae). Zygote 14, 217–29.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F., De Azevedo, A., Agostinho, C.A. & Veríssimo-Silveira, R. (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontinae). Zygote 15, 267–71.CrossRefGoogle Scholar
Normando, F.T., Arantes, F.P., Luz, R.K., Thomé, R.G., Rizzo, E. & Bazzoli, N. (2009). Reproduction and fecundity of tucunaré, Cichla kelberi (Perciformes: Cichlidae), an exotic species in Três Marias Reservoir, Southeastern Brazil. J. Appl. Ichthyol. 25, 299305.CrossRefGoogle Scholar
Reynalte-Tataje, D., Zaniboni-Filho, E., Muelbert, B. (2001). Stages of the embryonic development of the piavuçu Leporinus macrocephalus (Garavello & Britski, 1988). Acta Scient. 23, 823–7.Google Scholar
Ribeiro, C.R., Leme dos Santos, H.S. & Bolzan, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (Pacu, Piaractus mesopotamicus, Tambaqui, Colossoma macropomum e híbrido Tambacu). Rev. Bras. Biol. 55, 6578.Google Scholar
Riehl, R. & Patzner, R.A. (1998). Minireview: the modes of egg attachment in teleost fishes. Ital. J. Zool. 65, 415–20.CrossRefGoogle Scholar
Rizzo, E. & Bazzoli, N. (1991). The zona pellucida of the Brazilian white piranha, Serrasalmus brandtii Reinhardt, 1874 (Pisces, Characidae): A cytological and cytochemical study. Funct. Develop. Morph. 1, 21–4.Google ScholarPubMed
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615–32.CrossRefGoogle Scholar
Sanches, P.V., Nakatani, K. & Bialetzki, A. (1999). Morphological description of the developmental stages of Parauchenipterus galeatus (Linnaeus, 1766) (Siluriformes, Auchenipteridae) on the floodplain of the upper Paraná River. Rev. Bras. Biol. 59, 429–38.CrossRefGoogle Scholar
Santos, J.E. & Godinho, H.P. (1994). Morfogênese e comportamento larvais do surubim (Pseudoplatystoma coruscans) (Agassiz, 1829) sob condições experimentais. Arq. Bras. Med. Vet. Zootec. 46, 139–47.Google Scholar
Santos, J.E., Padilha, G.E.V., Bomcompagni-Júnior, O., Santos, G.B., Rizzo, E. & Bazzoli, N. (2006). Ovarian follicle growth in the catfish Iheringichthys labrosus (Siluriformes: Pimelodidae). Tissue Cell 38, 303–10.CrossRefGoogle ScholarPubMed
Sargent, R.C., Taylor, P.D. & Gross, M.R. (1987). Parental care and evolution of egg size in fishes. Am. Nat. 121, 3246.CrossRefGoogle Scholar
Sato, Y., Fererich-Verani, N., Verani, J.R., Godinho, H.P. & Sampaio, E.V. (1998). Induced reproduction and reproductive characteristics of Rhinelepis aspera Agassiz, 1829 (Osteichthyes: Siluriformes, Loricariidae). Braz. Arch. Biol. Techn. 41, 309–14.CrossRefGoogle Scholar
Sato, Y., Fenerich-Verani, N., Nuñer, A.P.O., Godinho, H.P. & Verani, J.R. (2003). Padrões reprodutivos de peixes da bacia do São Francisco. In Águas, peixes e pescadores do São Francisco das Minas Gerais (eds. Godinho, H.P. & Godinho, A.L.), pp. 229–74. Belo Horizonte: CNPq/PADCT, Editora PUC Minas.Google Scholar
Suzuki, H.I., Agostinho, A.A. & Winemiller, K.O. (2000). Relationship between oocyte morphology and reproductive strategy in loricariid catfishes of the Paraná River, Brazil. J. Fish Biol. 57, 791807.CrossRefGoogle Scholar
Trinkaus, J.P. (1984a). Cells into Organs: the Forces that Shape the Embryo, second edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Trinkaus, J.P. (1984b). Mechanism of Fundulus epiboly – a Current Review. Am. Zool. 24, 637–88.CrossRefGoogle Scholar
Trinkaus, J.P. (1993). The yolk syncytial layer of Fundulus heteroclitus: origin and history and its significance for early embryogenesis. J. Exp. Zool. 265, 258–84.CrossRefGoogle Scholar
Uguz, C. (2008). Histological evaluation of gonadal differentiation in fathead minnows (Pimephalus promelas). Tissue Cell 40, 299306.CrossRefGoogle ScholarPubMed
Yoshizaki, G., Takeuchi, Y., Kobayashi, T., Ihara, S. & Takeuchi, T. (2002). Primordial germ cells: the blueprint for a piscine life. Fish Physiol. Biochem. 26, 312.CrossRefGoogle Scholar