Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T11:28:03.876Z Has data issue: false hasContentIssue false

Beneficial effect of medium with high concentration serum for direct sperm injection into mouse oocytes using a conventional pipette

Published online by Cambridge University Press:  26 September 2008

Kazuo Suzuki
Affiliation:
Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu, Hawaii 96822, USA
R. Yanagimachi*
Affiliation:
Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu, Hawaii 96822, USA
*
R. Yanagimachi, Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, 1951 East-West Road, Honolulu, HI 96822USA. Fax: +1(808)956-5474. e-mail: [email protected].

Summary

Although the piezo-electrically driven pipette is much more effective than a conventional pipette for direct sperm injection into mouse oocytes, the piezo-pipette driving unit is expensive and may not be readily accessible to most basic laboratories. We reprot here that the inefficiency of the conventional pipette can be improved by performing the operation in a medium with high serum concentration.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, A., Ng, S.C., Liow, S.L., Ali, J., Bongso, A. &Ratnam, S.S. (1995). Intracytoplasmic sperm injection of mouse oocytes with 5mM Ca2+ at different intervals. Hum. Reprod. 10,431–5.CrossRefGoogle Scholar
Almeida, P.A. & Bolton, V.N. (1995). The effect of temperature fluctuations on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote 3, 357–65.CrossRefGoogle ScholarPubMed
Chatot, C.L., Ziomek, A., Bavister, B.D., Lewis, J.L. & Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86 679–88.CrossRefGoogle ScholarPubMed
Chatot, C.L., Lewis, L., Torres, I. & Ziomek, C.A. (1990). Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42,432–40.CrossRefGoogle ScholarPubMed
Iritani, A., Utsumi, K., Miyake, M., Hosoi, Y. & Saeki, K. (1988). In vitro fertilization by a routine method and by micromanipulation. Ann. N.Y. Acad. Sci. 541,583–90.CrossRefGoogle ScholarPubMed
Kimura, Y. & Yanagimachi, R. (1995). Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–20.CrossRefGoogle ScholarPubMed
Lacham-Kaplan, O. & Trounson, A. (1995). Intracytoplasmic sperm injection in mice: increased fertilization and development to term after induction of the acrosome reaction. Hum. Reprod. 10,2642–9.CrossRefGoogle ScholarPubMed
Lanzendorf, S.E., Maloney, M.K., Veeck, L.L., Slusser, J., Hodgen, G.D. & Rosenwaks, Z. (1988). A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil. Steril. 49, 835–42.CrossRefGoogle ScholarPubMed
Markert, C.L. (1983). Fertilization of mammalian eggs by sperm injection. J. Exp. Zool. 228,195201.CrossRefGoogle ScholarPubMed
Nagy, Z.P., Liu, J., Joris, H., Verheyen, G., Tournaye, H., Camus, M., Derde, M.-P., Devroey, P. & Van Steirteghem, A.C. (1995). The results of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters. Hum. Reprod. 10. 1123–9.CrossRefGoogle ScholarPubMed
Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A.C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 1718.CrossRefGoogle ScholarPubMed
Pickering, S.J.. Johnson, M.H. (1987). The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod. 2, 207–16.CrossRefGoogle ScholarPubMed
Pickering, S.J., Cant, A., Braude, P.R., Currie, J. & Johnson, M.H. (1990). Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54, 102–8.CrossRefGoogle ScholarPubMed
Ron-El, R., Liu, J., Nagy, Z.Joris, H., Van den Abbeel, E. & Van Steirteghem, A.C. (1995). Intracytoplasmic sperm injection in the mouse. Hum. Reprod. 10, 2831–4.CrossRefGoogle ScholarPubMed
Rybouchkin, A., Dozortsev, D., De Sutter, P., Qian, C. & Dhont, M. (1995). Intracytoplasmic injection of human spermatozoa into mouse oocytes: a useful model to investigate the oocyte-activating capacity and karyotype of human spermatozoa, Hum. Reprod. 10, 1130–5.CrossRefGoogle ScholarPubMed
Schatten, G. (1994). The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165,299335.CrossRefGoogle ScholarPubMed
Simerly, C., Wu, G.-J., Zoran, S., Ord, T., Rawlins, R., Jones, J.Navara, C.Gerrity, M.Rinehart, J.Binor, Z.Asch, R. & Schatten, G. (1995). The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility Nature Med. 1 4752.CrossRefGoogle ScholarPubMed
Sutovsky, P.Hewitson, L.Simerly, C.R.Tengowski, M.W.Navara, C.S.Haavisto, A. & Schatten, G. (1996). Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly Hum. Reprod.. 11 1703–12.CrossRefGoogle ScholarPubMed
Van steirteghem, A.C., Nagy, Z.,Joris, H., Liu, J., Staessen, C., Smitz, J., Wisanto, A. & Devroey, P. (1993). High fertilization and implantation rates after intracytoplasmic sperm injection Hum. Reprod. 8 1061–6.CrossRefGoogle ScholarPubMed