Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T08:04:39.008Z Has data issue: false hasContentIssue false

Assessment of mitochondrial DNA viability ratio in day-4 biopsied embryos as an add-in to select euploid embryos for single embryo transfer

Published online by Cambridge University Press:  23 September 2022

Ahmad Metwalley*
Affiliation:
Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt King Abdelaziz Medical City, Assisted Reproductive Unit, Jeddah, Saudi Arabia
Ali Hellani
Affiliation:
Viafet Genomics Centre, Sydney, Australia
Azza A. Abdelrazek
Affiliation:
Department of Obstetrics and Gynaecology, Ain Shames University, Egypt
Ahmed El-Damen
Affiliation:
Division of Embryology and Comparative Anatomy, Faculty of Science, Cairo University, Egypt
Ahmed Al Dawood
Affiliation:
Viafet Genomics Centre, Sydney, Australia
Nabeel Brasha
Affiliation:
King Abdelaziz Medical City, Assisted Reproductive Unit, Jeddah, Saudi Arabia
Sandro C. Esteves
Affiliation:
ANDROFERT, Andrology and Human Reproduction Clinic, Referral Centre for Male Reproduction, Campinas, SP, Brazil
Manal El Hamshary
Affiliation:
Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
Omaima Khamiss
Affiliation:
Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
*
Author for correspondence: Ahmad Metwalley. Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt. Tel: +96 6567567556. E-mail: [email protected].

Summary

The aim of this study was to assess mitochondrial DNA analysis as a predictor of the pregnancy potential of biopsied preimplantation embryos. The study included 78 blastomeres biopsied from day 4 cleavage stage euploid embryos. The embryo karyotype was confirmed by 24-chromosome preimplantation genetic testing for aneuploidies using the Illumina Next-Generation Sequencing (NGS) system. Mitochondria viability ratios (mtV) were determined from BAM files subjected to the web-based genome-analysis tool Galaxy. From this cohort of patients, 30.4% of patients (n = 34) failed to establish pregnancy. The mean mtV ratio [mean = 1.51 ± 1.25–1.77 (95% CI)] for this group was significantly (P < 0.01) lower compared with the embryo population that resulted in established pregnancies [mean = 2.5 ± 1.82–2.68 (95% CI)]. mtV multiple of mean (MoM) values were similarly significantly (P < 0.01) lower in blastocysts failing to establish pregnancy. At a 0.5 MoM cut-off, the sensitivity of mtV quantitation was 35.3% and specificity was 78.2%. The positive predictive value for an mtV value > 0.5 MoM was 41.4%. This study demonstrates the clinical utility of preimplantation quantification of viable mitochondrial DNA in biopsied blastomeres as a prognosticator of pregnancy potential.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpha Scientists In Reproductive Medicine and ESHRE Special Interest Group Embryology: Balaban, B., Brison, D., Calderon, G., Catt, J., Conaghan, J., Cowan, L., Ebner, T., Gardner, D., Hardarson, T., Lundin, K. and Magli, M. C. (2011a). Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Reproductive Biomedicine Online, 22(6), 632646. doi: 10.1016/j.rbmo.2011.02.001 Google Scholar
Alpha Scientists In Reproductive Medicine and ESHRE Special Interest Group Embryology: Balaban, B., Brison, D., Calderon, G., Catt, J., Conaghan, J., Cowan, L., Ebner, T., Gardner, D., Hardarson, T., Lundin, K., Magli, M. C., Mortimer, D., Mortimer, S., Munné, S., Royere, D., Scott, L., Smitz, J., Thornhill, A., van Blerkom, J., Van den Abbeel, E. (2011b). The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Human Reproduction, 26(6), 12701283. doi: 10.1093/humrep/der037 Google Scholar
Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A. and Taylor, J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology, doi: 10.1002/0471142727.MB1910S89 Google Scholar
Claiborne, A. B., English, R. A. and Kahn, J. P. (2016). Finding an ethical path forward for mitochondrial replacement. Science, 351(6274), 668670. doi: 10.1126/SCIENCE.AAF3091 CrossRefGoogle ScholarPubMed
Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., Rajasimha, H. K., Wonnapinij, P., Mann, J. R., Dahl, H. H. M. and Chinnery, P. F. (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nature Genetics, 40(2), 249254. doi: 10.1038/ng.2007.63 CrossRefGoogle ScholarPubMed
Dang, V. Q., Vuong, L. N., Ho, T. M., Ha, A. N., Nguyen, Q. N., Truong, B. T., Pham, Q. T., Wang, R., Norman, R. J. and Mol, B. W. (2019). The effectiveness of ICSI versus conventional IVF in couples with non-male factor infertility: Study protocol for a randomised controlled trial. Human Reproduction Open, 2019(2), hoz006. doi: 10.1093/hropen/hoz006 CrossRefGoogle ScholarPubMed
Diez-Juan, A., Rubio, C., Marin, C., Martinez, S., Al-Asmar, N., Riboldi, M., Díaz-Gimeno, P., Valbuena, D. and Simón, C. (2015). Mitochondrial DNA content as a viability score in human euploid embryos: Less is better. Fertility and Sterility, 104(3), 534–41.e1–541. doi: 10.1016/j.fertnstert.2015.05.022 CrossRefGoogle ScholarPubMed
Dumollard, R., Duchen, M. and Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Current Topics in Developmental Biology, 77, 2149. doi: 10.1016/S0070-2153(06)77002-8 CrossRefGoogle ScholarPubMed
El-Damen, A., Elkhatib, I. and Fatemi, H. M. (2021). Does blastocyst mitochondrial DNA content affect miscarriage rate in patients undergoing single euploid frozen embryo transfer? Journal of Assisted Reproduction and Genetics, 38(3), 595604. doi: 10.1007/S10815-020-02050-8 CrossRefGoogle ScholarPubMed
Enciso, M., Aizpurua, J., Rodríguez-Estrada, B., Jurado, I., Ferrández-Rives, M., Rodríguez, E., Pérez-Larrea, E., Climent, A. B., Marron, K. and Sarasa, J. (2021). The precise determination of the window of implantation significantly improves ART outcomes. Scientific Reports, 11(1), 13420. doi: 10.1038/s41598-021-92955-w CrossRefGoogle ScholarPubMed
Forman, E. J., Hong, K. H., Franasiak, J. M. and Scott, Jr., R. T. (2014). Obstetrical and neonatal outcomes from the BEST Trial: Single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. American Journal of Obstetrics and Gynecology, 210(2), 157.e1157.e6. doi: 10.1016/j.ajog.2013.10.016 CrossRefGoogle ScholarPubMed
Goecks, J., Nekrutenko, A., Taylor, J., Afgan, E., Ananda, G., Baker, D., Blankenberg, D., Chakrabarty, R., Coraor, N., Goecks, J., von Kuster, G., Lazarus, R., Li, K., Taylor, J. and Vincent, K. (2010). Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8), 113. doi: 10.1186/GB-2010–11–8-R86/TABLES/1 CrossRefGoogle ScholarPubMed
Goto, H., Dickins, B., Afgan, E., Paul, I. M., Taylor, J., Makova, K. D. and Nekrutenko, A. (2011). Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. http://genomebiology.com/2011/12/6/R59. Genome Biology, 12(6), R59. doi:10.1186/gb-2011-12-6-r59CrossRefGoogle Scholar
Heyland, D. K., Johnson, A. P., Reynolds, S. C. and Muscedere, J. (2011) Procalcitonin for reduced antibiotic exposure in the critical care setting: A systematic review and an economic evaluation. Critical Care Medicine, 39(7), 17921799. doi: 10.1097/CCM.0b013e31821201a5 CrossRefGoogle Scholar
Ikuma, S., Sato, T., Sugiura-Ogasawara, M., Nagayoshi, M., Tanaka, A. and Takeda, S. (2015) Preimplantation genetic diagnosis and natural conception: A comparison of live birth rates in patients with recurrent pregnancy loss associated with translocation. PLOS ONE, 10(6), e0129958. doi: 10.1371/journal.pone.0129958 CrossRefGoogle Scholar
Kang, Y. N., Hsiao, Y. W., Chen, C. Y. and Wu, C. C. (2018) Testicular sperm is superior to ejaculated sperm for ICSI in cryptozoospermia: An update systematic review and meta-analysis. Scientific Reports, 8(1), 7874. doi: 10.1038/s41598-018-26280-0.CrossRefGoogle Scholar
Larsson, N. G. (2010). Somatic mitochondrial DNA mutations in mammalian aging. Annual Review of Biochemistry, 79, 683706. doi: 10.1146/annurev-biochem-060408-093701 CrossRefGoogle ScholarPubMed
Lee, V. C., Chow, J. F., Lau, E. Y., Yeung, W. S., Ho, P. C. and Ng, E. H. (2015). Comparison between fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis in translocation carriers. Hong Kong Medical Journal 21(1), 1622. doi: 10.12809/hkmj144222 Google ScholarPubMed
Lin, D. P., Huang, C. C., Wu, H. M., Cheng, T. C., Chen, C. I. and Lee, M. S. (2004). Comparison of mitochondrial DNA contents in human embryos with good or poor morphology at the 8-cell stage. Fertility and Sterility, 81(1), 7379. doi: 10.1016/j.fertnstert.2003.05.005 CrossRefGoogle ScholarPubMed
Metwalley, A., Brasha, N., Esteves, S. C., Fawzy, M., Brasha, H., Hellani, A., el Hamshary, M. and Khamiss, O. (2020). Role of diagnostic intracytoplasmic sperm injection (ICSI) in the management of genetically determined zona pellucida-free oocytes during in vitro fertilization: A case report. Zygote, 28(6), 519523. doi: 10.1017/S0967199420000441 CrossRefGoogle ScholarPubMed
Mortimer, D. (1991). Sperm preparation techniques and iatrogenic failures of in-vitro fertilization. Human Reproduction, 6(2), 173176. doi: 10.1093/oxfordjournals.humrep.a137300 CrossRefGoogle ScholarPubMed
Oktay, K., Bedoschi, G., Pacheco, F., Turan, V. and Emirdar, V. (2016). First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery. American Journal of Obstetrics and Gynecology, 214(1), 94.e1–9. doi: 10.1016/j.ajog.2015.10.001 CrossRefGoogle ScholarPubMed
Reardon, S. (2016). US panel backs ‘three-person’ embryos. Nature, 530(7589), 142. doi: 10.1038/NATURE.2016.19290 CrossRefGoogle Scholar
Scott, R. T., Upham, K. M., Forman, E. J., Hong, K. H., Scott, K. L., Taylor, D., Tao, X. and Treff, N. R. (2013). Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: A randomized controlled trial. Fertility and Sterility, 100(3), 697703. doi: 10.1016/j.fertnstert.2013.04.035 CrossRefGoogle ScholarPubMed
Spikings, E. C., Alderson, J. and St John, J. C. St. (2006). Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Human Reproduction Update, 12(4), 401415. doi: 10.1093/HUMUPD/DML011 CrossRefGoogle ScholarPubMed
Van Blerkom, J., Davis, P. W. Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction, 10(2), 415424. doi: 10.1093/oxfordjournals.humrep.a135954 CrossRefGoogle ScholarPubMed
Vence, T. (2016). IOM: Mitochondrial replacement ‘ethically permissible’. The Scientist Available from: https://www.the-scientist.com/search?for=the+nutshell+iom+mitochondrial+replacement+ethically+permissible+34079+20Scientist Google Scholar
Victor, A. R., Brake, A. J., Tyndall, J. C., Griffin, D. K., Zouves, C. G., Barnes, F. L. and Viotti, M. (2017). Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertility and Sterility, 107(1), 3442.e3. doi: 10.1016/j.fertnstert.2016.09.028 CrossRefGoogle ScholarPubMed
Weissensteiner, W., Forer, L., Fuchsberger, C., Schöpf, B., Kloss-Brandstätter, A., Specht, G., Kronenberg, F. and Schönherr, S. (2016). mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Research, 44(W1), W649. doi: 10.1093/nar/gkw247 CrossRefGoogle ScholarPubMed
Wells, D., Kaur, K., Grifo, J., Glassner, M., Taylor, J. C., Fragouli, E. and Munne, S. (2014). Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. Journal of Medical Genetics, 51(8), 553562. doi: 10.1136/jmedgenet-2014-102497 CrossRefGoogle Scholar
Xie, W., Tan, Y., Li, X., Lin, G., Jiang, H., Chen, F., Zhang, C., Gong, F., Pan, X., Chen, S., Lu, G., Wang, W. and Zhang, X. (2013). Rapid detection of aneuploidies on a benchtop sequencing platform. Prenatal Diagnosis, 33(3) 232237. doi: 10.1002/pd.4049 CrossRefGoogle ScholarPubMed
Yang, Z., Liu, J., Collins, G. S., Salem, S. A., Liu, X., Lyle, S. S., Peck, A., Sills, E. S. and Salem, R. D. (2012). Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: Results from a randomized pilot study. Molecular Cytogenetics, 5(1), 24. doi: 10.1186/1755-8166-5-24 CrossRefGoogle ScholarPubMed
Yesodi, V., Yaron, Y., Lessing, J.B., Amit, A. and Ben-Yosef, D. (2002). The mitochondrial DNA mutation (ΔmtDNA5286) in human oocytes: correlation with age and IVF outcome. Journal of Assisted Reproduction and Genetics, 19(2), 6066. doi: 10.1023/A:1014439529813 CrossRefGoogle ScholarPubMed
Zakharova, E. E., Zaletova, V. and Krivokharchenko, A. S. (2014). Biopsy of human morula-stage embryos: Outcome of 215 IVF/ICSI cycles with PGS. PLoS ONE, 9(9), 106433. doi: 10.1371/journal.pone.0106433 CrossRefGoogle ScholarPubMed
Zhidkov, I., Nagar, T., Mishmar, D. and Rubin, E. (2011). MitoBamAnnotator: A web-based tool for detecting and annotating heteroplasmy in human mitochondrial DNA sequences. Mitochondrion, 11(6), 924928. doi: 10.1016/J.MITO.2011.08.005 CrossRefGoogle ScholarPubMed