Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T16:04:57.637Z Has data issue: false hasContentIssue false

Analysis of DNA looped domains organization during Triturus cristatus spermatogenesis

Published online by Cambridge University Press:  18 May 2011

L. Burlibaşa*
Affiliation:
University of Bucharest, Genetics Department, No 1–3 Aleea Portocalilor, Bucharest, Romania.
*
All correspondence to: Liliana Burlibaşa. University of Bucharest, Genetics Department, No 1–3 Aleea Portocalilor, Bucharest, Romania. Tel:/Fax: +4 0213181565. e-mail: [email protected]

Summary

Chromatin from eukaryotes is organized in DNA loops with sequential attachments to a nucleoskeleton named nuclear matrix. This organization plays major roles in replication, transcription, recombination, DNA repair, chromosome condensation and segregation. During spermatogenesis, chromatin undergoes several dynamic transitions, which are often associated with important changes not only in its physical conformation but even in its compositions and structure. To understand the periodical change in the functional organization of chromatin during spermatogenesis, the higher order organization of chromatin in different testicular cell types (pachytene spermatocytes, round spermatids) and the epididymal sperm of Triturus cristatus have been investigated. The expansion and the contraction of nucleoid DNA were measured with a fluorescence microscope following exposure of nucleoids to increasing concentrations of ethidium bromide (EtBr) (2.5–200 μg/ml) as an intercalating dye to induce DNA-positive supercoils. Nucleoids from all studied cell types exhibited a biphasic change (condensed–relaxed–condensed) in size as a consequence of exposure to increasing concentrations of EtBr, indicating that they contained negatively supercoiled DNA. At higher EtBr concentrations, maximum positive supercoiling occurred in pachytene DNA loops. Our data suggest that pachytene DNA is the most open chromatin conformation in terms of EtBr intercalation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausio, J. & Subirana, J.A. (1982). A high molecular weight nuclear basic protein from the bivalve mollusc Spisula solidissima. J. Biol. Chem. 257, 28022805.CrossRefGoogle ScholarPubMed
Ausio, J. & Suau, P. (1983). Structural heterogeneity of reconstituted complexes of DNA with typical and intermediate protamines. Biophys. Chem. 18, 257267.CrossRefGoogle ScholarPubMed
Ausio, J. (1986). Structural variability and compositional homology of the protamine-like components of the sperm from the bivalve molluscs. Comp. Biochem. Physiol. 85B, 439449.Google Scholar
Ausio, J. (1995). Histone H1 and the evolution of the nuclear sperm-specific proteins, Advances in Spermatozoal Phylogeny and Taxonomy vol. 166, Paris: Mem. Mus, natn. Hist. Nat. pp. 447462.Google Scholar
Avramova, Z.V., Zalensky, A.O. & Tsanev, R. (1984). Biochemical and ultrastructural study of the sperm chromatin from Mytilus galloprovincialis. Exp. Cell Res. 152, 231239.CrossRefGoogle ScholarPubMed
Balhorn, R.A. (1982). A model for the structure of chromatin in mammalian sperm. J. Cell Biol. 93, 298305.CrossRefGoogle Scholar
Bloch, D.P. (1969). A catalog of sperm histones. Genetics 61, 93111.Google ScholarPubMed
Boissonneault, G. (2002). Chromatin remodeling during spermatogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett. 514, 111114.CrossRefGoogle ScholarPubMed
Bonifer, C., Jägle, U. & Huber, M. (1997). The chicken lysozyme locus as a paradigm for the complex developmental regulation of eukaryotic gene loci. J. Biol. Chem. 272, 2605726078.CrossRefGoogle ScholarPubMed
Burlibaşa, L. & Gavrilă, L. (2005). Molecular and ultrastructural studies of chromatin sperm from Triturus cristatus. Zygote 13, 197205.CrossRefGoogle ScholarPubMed
Cook, P.R. & Brazell, I.A. (1976). Conformation constraints in nuclear DNA. J. Cell Sci. 22, 287302.CrossRefGoogle ScholarPubMed
Cook, P.R., Brazell, I.A. & Jost, E. (1976). Characterization of nuclear structures containing superhelical DNA. J. Cell Sci. 22, 303324.CrossRefGoogle ScholarPubMed
Cornudella, L. & Rocha, E. (1979). Nucleosome organization during germ cell development in the sea cucumber Holothuria tubulosa. Biochemistry 18, 287302.CrossRefGoogle ScholarPubMed
Dillon, N. & Grosveld, F. (1993). Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 9, 134137.CrossRefGoogle ScholarPubMed
Gasser, S.M. & Laemmli, U.K. (1987). A glimpse at chromosomal order. Trends Genet. 3, 1622.CrossRefGoogle Scholar
Gatewood, J.M., Cook, G.R., Balhorn, R., Bradbury, E.M. & Schmid, C.W. (1987). Sequence-specific packing of DNA in human sperm chromatin. Science 236, 962964.CrossRefGoogle Scholar
Gerdes, M.G., Carter, K.C., Moen, P.T. Jr & Lawrence, J.B. (1994). Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J. Cell Biol. 126, 289304.CrossRefGoogle ScholarPubMed
Kasinsky, H.E., Huang, S.Y., Mann, M., Roca, J. & Subirana, J.A. (1985). Cytochemical and amino acid analysis in Anura. J. Exp. Zool. 234, 3346.CrossRefGoogle ScholarPubMed
Muños-Guerra, S., Azorin, M., Casas, M.T., Marcet, X., Maristany, M.A., Roca, J. & Subirana, J.A. (1982). Structural organization of sperm chromatin from the fish Carassius auratus. Exp. Cell Res. 137, 4753.CrossRefGoogle Scholar
Narayan, G. & Raman, R. (2004). Analysis of topological organization of chromatin during spermatogenesis in mouse testis, Gen. Mol. Biol. 27, 3338.CrossRefGoogle Scholar
Nelson, W.G., Pienta, K.J., Barrack, E.R. & Coffey, D.S. (1986). The role of the nuclear matrix in the organization and function of DNA. Ann. Rev. Biophys. Chem. 15, 457475.CrossRefGoogle ScholarPubMed
Pienta, K.J. & Coffey, D.S. (1984). A structural analysis of the role of the nuclear matrix and DNA loops in the organization of the nucleus and chromosome. J. Cell Sci. 1, 123135.CrossRefGoogle ScholarPubMed
Risley, M.S., Einherber, S. & Bumcrot, D.A. (1986). Changes in DNA topology during spermatogenesis. Chromosoma 94, 217227.CrossRefGoogle ScholarPubMed
Robinson, S.I., Small, D., Idzerda, R., McKnight, G.S. & Vogelstein, B. (1983). The association of transcriptionally active genes with the nuclear matrix of the chicken oviduct Nucl. Acids Res. 11, 51135130.CrossRefGoogle Scholar
Sobhon, P., Tanphaichitr, N., Chutatapc, C., Vongpayabal, P. & Panuwatsuk, W. (1982). Electron microscopic and biochemical analyses of the organization of human sperm chromatin decondensed with sarkosyl and dithiothreitol. J. Exp. Zool. 223, 277290.CrossRefGoogle ScholarPubMed
Spadafora, C., Bellard, M., Compton, J.L. & Chambon, P. (1976). The DNA repeat length in chromatins from sea urchin sperm and gastrula cells are markedly different. FEBS Lett. 69, 281285.CrossRefGoogle Scholar
VanderWaal, R.P., Spitz, D.R., Griffith, C.L., Higashikubo, R. & Roti, J.L.R. (2002). Evidence that protein disulphide isomerase (PDI) is involved in DNA-nuclear matrix anchoring. J. Cell Biochem. 85, 689702.CrossRefGoogle ScholarPubMed
Vogelstein, B., Pordoll, D.M. & Coffey, D.S. (1980). Supercoiled loops and eukaryotic DNA replication. Cell 22, 7985.CrossRefGoogle Scholar
Ward, W.S. & Coffey, D.S. (1991). DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 44, 569574.CrossRefGoogle ScholarPubMed
Ward, W.S., Partin, A.W. & Coffey, D.S. (1989). DNA loop domains in mammalian spermatozoa. Chromosoma 98, 153159.CrossRefGoogle ScholarPubMed
Wykes, S.M. & Krawetz, S.A. (1999). Gene potentiation: Forming long range open chromatin structures. Gen. Ther. Mol. Biol. 4, 303312.Google Scholar