Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T23:12:03.720Z Has data issue: false hasContentIssue false

Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: consequences on early embryo development

Published online by Cambridge University Press:  01 November 2016

D.E. Rosa
Affiliation:
Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
J.M. Anchordoquy
Affiliation:
Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina. Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
J.P. Anchordoquy
Affiliation:
Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina. Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
M.A. Sirini
Affiliation:
Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
J.A. Testa
Affiliation:
Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
G.A. Mattioli
Affiliation:
Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
C.C. Furnus*
Affiliation:
Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina. Cátedra de Citología, Histología y Embriología ‘A’, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina.
*
All correspondence to: C.C. Furnus. Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata - CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina Tel:/Fax: +54 0221 421 1799. E-mail: [email protected]

Summary

The aim of this study was to investigate the influence of copper (Cu) during in vitro maturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu, P < 0.01) with respect to cells treated with Cu for cumulus–oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. After in vitro fertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anchordoquy, J.M., Anchordoquy, J.P., Sirini, M.A., Picco, S.J., Peral-García, P. & Furnus, C.C. (2014). The importance of having zinc during in vitro maturation of cattle cumulus–oocyte complex: role of CC. Reprod. Domest. Anim. 49, 865–74.CrossRefGoogle Scholar
Andree, H.A., Reutelingsperger, C.P., Hauptmann, R., Hemker, H.C., Hermens, W.T. & Willems, G.M. (1990). Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J. Biol. Chem. 265, 4923–8.CrossRefGoogle ScholarPubMed
Arnesano, F., Banci, L., Bertini, I., Mangani, S. & Thompsett, A.R. (2003). A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc. Natl. Acad. Sci. USA 100, 3814–9.CrossRefGoogle Scholar
Balevska, P.S., Russanov, E.M. & Kassabova, T.A. (1981). Studies on lipid peroxidation in rat liver by copper deficiency. Eur. J. Biochem. 13, 489–93.Google ScholarPubMed
Ball, G.D., Liebfried, L.L., Lenz, R.W., Ax, R.L., Bavister, R.D. & First, N.L. (1983). Factors affecting successful in vitro fertilization of bovine follicular oocytes. Biol. Reprod. 28, 717–25.CrossRefGoogle ScholarPubMed
Blondin, P., Coenen, K. & Sirard, M.A. (1997). The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J. Androl. 18, 454–60.CrossRefGoogle ScholarPubMed
Bocker, W., Bauch, T., Muller, W.U. & Streffer, C. (1997). Technical Report: image analysis of comet assay measurements. Int. J. Radiat. Biol. 72, 449–60.CrossRefGoogle ScholarPubMed
Bull, P.C. & Cox, D.W. (1994). Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10, 246–52.CrossRefGoogle ScholarPubMed
Chen, Y., Saari, J.T. & Kang, Y.J. (1994). Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic. Biol. Med. 17, 529–36.CrossRefGoogle Scholar
Chian, R.C., Niwa, K. & Sirard, M.A. (1994). Effect of CC on the male pronuclear formation and subsequent early development of bovine oocytes in vitro . Theriogenology 41, 14991508.CrossRefGoogle Scholar
Collins, A.R. (2004). The comet assay for DNA damage and repair. Principles, applications, and limitations. Mol. Biotech. 26, 249–61.CrossRefGoogle ScholarPubMed
Combelles, C.M., Gupta, S. & Agarwal, A. (2009). Could oxidative stress influence the in-vitro maturation of oocytes? Reprod. Biomed. Online 18, 864–80.CrossRefGoogle ScholarPubMed
Creutz, C.E. (1992). Science The annexins and exocytosis 6, 9241031.CrossRefGoogle Scholar
de Matos, D.G., Furnus, C.C. & Moses, D.F. (1997). Glutathione synthesis during in vitro maturation of bovine oocytes: role of CC. Biol. Reprod. 57, 1420–15.CrossRefGoogle Scholar
Dargatz, D.A., Garry, F.B. & Clark, G.B. (1999). Serum copper concentration in beef cows and heifers. J. Am. Vet. Med. Assoc. 215, 1828–32.CrossRefGoogle ScholarPubMed
Dillon, J. (1992). Evaluación de las campañas antiaftosa. [Evaluation of anti-aftosa campaigns.] COPROSA, I., 113.Google Scholar
Edson, M.A., Nagaraja, A.K. & Matzuk, M.M. (2009). The mammalian ovary from Genesis to revelation. Endocr Rev. 30, 624712.CrossRefGoogle ScholarPubMed
Eppig, J.J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–74.CrossRefGoogle ScholarPubMed
Eppig, J.J. (1982). The relationship between cumulus cell oocyte coupling., oocyte meiotic maturation., and cumulus expansion. Dev. Biol. 89, 268–72.CrossRefGoogle ScholarPubMed
Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. & Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 48, 2207–16.CrossRefGoogle Scholar
Furnus, C.C., de Matos, D.G. & Moses, D.F. (1998). Cumulus expansion during in vitro maturation of bovine oocytes: relationship with intracellular glutathione level and its role on subsequent embryo development. Mol. Reprod. Dev. 51, 7683.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Gardner, D.K., Lane, M., Spitzer, A. & Batt, P.A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids., vitamins., and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390400.CrossRefGoogle Scholar
Gilchrist, R.B., Lane, M. & Thompson, J.G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Upd. 14, 159–77.CrossRefGoogle ScholarPubMed
Gilchrist, R.B., Ritter, L.J. & Armstrong, D.T. (2004). Oocyte-somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82, 431–46.CrossRefGoogle ScholarPubMed
Guerin, P., El Mouatassim, S. & Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–89.CrossRefGoogle ScholarPubMed
Gybina, A.A. & Prohaska, J.R. (2003). Increased rat brain cytochrome c correlates with degree of perinatal copper deficiency rather than apoptosis. J. Nutr. 133, 3361–8.CrossRefGoogle ScholarPubMed
Hawk, S.N., Lanoue, L., Keen, C.L., Kwik-Uribe, C.L., Rucker, R.B. & Uriu-Adams, J.Y. (2003). Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol. Reprod. 68, 896903.CrossRefGoogle ScholarPubMed
Homburg, C.H., de Haas, M., von dem Borne, A.E., Verhoeven, A.J., Reutelingsperger, C.P. & Roos, D. (1995). Human neutrophils lose their surface Fc gamma RIII and acquire annexin V binding sites during apoptosis in vitro . Blood 85, 532–40.CrossRefGoogle ScholarPubMed
Hoppe, R. & Bavister, B. (1984). Evaluation of the fluorescein diacetate (FDA) vital dye viability test with hamster and bovine embryos. Anim. Reprod. Sci. 6, 323–5.CrossRefGoogle Scholar
Ikeda, S., Imai, H. & Yamada, M. (2003). Apoptosis in CC during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125, 369–76.CrossRefGoogle Scholar
Johnson, W.T. & Thomas, A.C. (1999). Copper deprivation potentiates oxidative stress in HL-60 cell mitochondria. Proc. Soc. Exp. Biol. Med. 221, 147–52.Google ScholarPubMed
Kambe, T., Weaver, BP. & Andrews, GK. (2008). The genetics of essential metal homeostasis during development. Genesis 46, 214–28.CrossRefGoogle ScholarPubMed
Kang, Y.J., Zhou, Z.X., Wu, H., Wang, G.W., Saari, JT. & Klein, JB. (2000). Metallothionein inhibits myocardial apoptosis in copper-deficient mice: role of atrial natriuretic peptide. Lab. Invest. 80, 745–57.CrossRefGoogle ScholarPubMed
Kang, S., Xiao, G., Ren, D., Zhang, Z., Le, N., Trentalange, M., Gupta, S., Lin, H. & Bondarenko, P.V. (2014). Proteomics analysis of altered cellular metabolism induced by insufficient copper level. J. Biotechnol. 189, 1526.CrossRefGoogle ScholarPubMed
Kim, B.E., Turski, M.L., Nose, Y., Casad, M., Rockman, H.A. & Thiele, D.J. (2010). Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 11, 353–63.CrossRefGoogle ScholarPubMed
Kim, H., Wu, X. & Lee, J. (2013). SLC31 (CTR) family of copper transporters in health and disease. Mol. Aspects Med. 34, 561570.CrossRefGoogle ScholarPubMed
Kim, S.K., Minami, N., Yamada, M. & Utsumi, K. (1996). Functional role of CC during maturation in development of in vitro matured and fertilized bovine oocytes. Theriogenology 45, 278.CrossRefGoogle Scholar
Koopman, G., Reutelingsperger, C.P., Kuijten, G.A., Keehnen, R.M., Pals, S.T. & van Oers, M.H. (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–20.CrossRefGoogle Scholar
Kuo, Y.M., Zhou, B., Cosco, D. & Gitschier, J. (2001). The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 98, 6836–41.CrossRefGoogle ScholarPubMed
Larsen, W.J. (1989). Mechanisms of gap junction modulation., In Sperelakis, N., Cole, W.C. Cell Interactions and Gap Junctions. Vol., I. Boca Raton, FL, CRC Press, pp. 327.Google Scholar
Larsen, W.J & Wert, S.E. (1988). Role of cell junctions in gametogenesis and in early embryonic development. Tissue Cell 20, 809–48.CrossRefGoogle ScholarPubMed
Lodde, V., Modina, S., Galbusera, C., Franciosi, F. & Luciano, A.M. (2007). Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol. Reprod. Dev. 74, 740–9.CrossRefGoogle ScholarPubMed
Lonergan, P. & Fair, T. (2008). In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69, 1722.CrossRefGoogle ScholarPubMed
Lovejoy, D.B. & Guillemin, G.J. (2014). The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci. 6, 173.CrossRefGoogle ScholarPubMed
Luciano, A.M., Lodde, V., Beretta, M.S., Colleoni, S., Lauria, A. & Modina, S. (2005). Developmental capability of denuded bovine oocyte in co-culture system with intact cumulus–oocyte complexes: role of CC., cyclic adenosine 30,50-monophosphate., and glutathione. Mol. Reprod. Dev. 71, 389–97.CrossRefGoogle Scholar
Lutsenko, S., Barnes, N.L., Bartee, M.Y. & Dmitriev, OY. (2007). Function and regulation of human copper-transporting ATPases. Physiol. Rev. 87, 1011–46.CrossRefGoogle ScholarPubMed
Miller, L.J. & Marx, J. (1998). Apoptosis. Science (special section) 281, 1301–26.CrossRefGoogle Scholar
Modina, S., Luciano, A.M., Vassena, R., Baraldi-Scesi, L., Lauria, A. & Gandolfi, F. (2001). Oocyte developmental competence after in vitro maturation depends on the persistence of cumulus–oocyte communications which are linked to the intracellular concentration of cAMP. Italian, J. Anat. Embryol. 106, 241–8.Google Scholar
Olive, P.L., Banáth, J.P & Durand, R.E. (1990). Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J Natl Cancer Inst. 2, 779–83.CrossRefGoogle Scholar
Olive, P.L., Durand, R.E., Jackson, S.M., Le Riche, J.C., Luo, C., Ma, R. & McLaren, D.B., Aquino-Parsons, C., Thomson, TA., Trotter, T. (1999). The comet assay in clinical practice. Acta Oncol. 8, 839–44.CrossRefGoogle Scholar
Pan, Y. & Loo, G. (2000). Effect of copper deficiency on oxidative DNA damage in Jurkat T-lymphocytes. Free Radic. Biol. Med. 28, 824–30.CrossRefGoogle ScholarPubMed
Pangas, S.A. & Matzuk, M.M. (2005). The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol. Reprod. 73, 582–5.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.F. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.CrossRefGoogle ScholarPubMed
Petris, M.J., Strausak, D. & Mercer, J.F. (2000). The Menkes copper transporter is required for the activation of tyrosinase. Hum. Mol. Genet. 9, 2845–51.CrossRefGoogle ScholarPubMed
Picco, S.J., Abba, M.C., Mattioli, G.A., Fazzio, L.E., Rosa, D., De Luca, J.C. & Dulout, F.N. (2004). Association between copper deficiency and DNA damage in cattle. Mutagenesis 19, 453–6.CrossRefGoogle ScholarPubMed
Picco, S.J., Rosa, D.E., Anchordoquy, J.P., Anchordoquy, J.M., Seoane, A., Mattioli, G.A. & Furnus, C.C. (2012). Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 77, 373–81.CrossRefGoogle ScholarPubMed
Ramirez, C.E., Mattioli, G.A., Tittarelli, C.M., Giuliodori, M.J. & Yano, H. (1998). Cattle hypocuprosis in Argentina associated with periodically flooded soils. Livestock Prod. Sci. 55, 4752.CrossRefGoogle Scholar
Rana, S.V.S. (2008). Metals and apoptosis: Recent developments. J. Trace Elem. Med. Biol. 22, 262–84.CrossRefGoogle ScholarPubMed
Rao, M.S., Yeldandi, A.V., Subbarao, V. & Reddy, J.K. (1993). Role of apoptosis in copper deficiency-induced pancreatic involution in the rat. Am. J. Pathol. 142, 1952–7.Google ScholarPubMed
Rayssiguier, Y., Gueux, E., Bussiere, L. & Mazur, A. (1993). Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J. Nutr. 123, 1343–8.Google ScholarPubMed
Rossi, L., Marchese, E., De Martino, A., Piccirilli, S., Rotilio, G. & Ciriolo, M.R. (2001a). Neurodegeneration in the animal model of Menkes’ disease involves Bcl-2-linked apoptosis. Neuroscience 103, 181–8.CrossRefGoogle ScholarPubMed
Rossi, L., Marchese, E., Lombardo, M.F., Rotilio, G. & Ciriolo, M.R. (2001b). Increased susceptibility of copper-deficient neuroblastoma cells to oxidative stress-mediated apoptosis. Free Radic. Biol. Med. 30, 1177–87.CrossRefGoogle ScholarPubMed
Sadoul, R. (1998). Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Differ. 5, 805–15.CrossRefGoogle ScholarPubMed
Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–91.CrossRefGoogle ScholarPubMed
Sirard, M.A. & Lambert, R.D. (1985). In vitro fertilization of bovine follicular oocytes obtained by laparoscopy. Biol. Reprod. 33, 487–94.CrossRefGoogle ScholarPubMed
Steveson, T.C., Ciccotosto, G.D., Ma, X.M., Mueller, G.P., Mains, R.E. & Eipper, B.A. (2003). Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 144, 188200.CrossRefGoogle Scholar
Sukalski, K.A., LaBerge, T.P. & Johnson, W.T. (1997). In vivo oxidative copper deficiency and DNA damage modification of erythrocyte membrane proteins in copper deficiency. Free Radic. Biol. Med. 22, 835–42.CrossRefGoogle Scholar
Sutton, M.L., Gilchrist, R.B. & Thompson, J.G. (2003). Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 3548.CrossRefGoogle Scholar
Talbot, P., Shur, B.D. & Myles, D.G. (2003). Cell adhesion and fertilization: steps in oocyte transport., sperm-zona pellucida interactions., and sperm-egg fusion. Biol. Reprod. 68, 19.CrossRefGoogle ScholarPubMed
Tervit, H.R., Whittingham, D.G. & Rowson, L.E.A. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 93–7.Google ScholarPubMed
Tessman, R.K., Lakritz, J., Tyler, J.W., Casteel, S.W., Williams, J.E. & Dew, R.K. (2001). Sensitivity and specificity of serum copper determination for detection of copper deficiency in feeder calves. J. Am. Vet. Med. Assoc. 218, 756–60.CrossRefGoogle ScholarPubMed
Tice, R.R. & Strauss, G.H. (1995). The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 1, 207214.Google Scholar
Verhoven, B., Schlegel, R.A. & Williamson, P. (1995). Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597–601.CrossRefGoogle ScholarPubMed
Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods 1995, 184, 3951.CrossRefGoogle ScholarPubMed
Wang, J.Y.J. (2001). DNA damage and apoptosis. Cell Death and Differentiation 8, 10471048.CrossRefGoogle ScholarPubMed
Wrenzycki, C. & Stinshoff, H. (2013). Maturation environment and impact on subsequent developmental competence of bovine oocytes. Reprod. Domest. Anim. 48 (Suppl. 1), 3843.CrossRefGoogle ScholarPubMed
Zadák, Z., Hyspler, R., Tichá, A., Hronek, M., Fikrová, P., Rathouská, J., Hrnciariková, D. & Stetina, R. (2009). Antioxidants and vitamins in clinical conditions. Physiol. Res. 58, S13–7.CrossRefGoogle ScholarPubMed
Zhang, L., Jiang, S., Wozniak, PJ., Yang, X. & Godke, R.A. (1995). Cumulus cell function during bovine oocyte maturation., fertilization., and embryo development in vitro . Mol. Reprod. Dev. 40, 338444.CrossRefGoogle ScholarPubMed
Zheng, W. & Monnot, A.D. (2012). Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol. Ther. 133, 177–88.CrossRefGoogle ScholarPubMed