Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T15:07:44.575Z Has data issue: false hasContentIssue false

Alteration in ultrastructural morphology of bovine embryos following subzonal microinjection of bovine viral diarrhea virus (BVDV)

Published online by Cambridge University Press:  01 August 2008

E. Kubovičová*
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
A. V. Makarevich
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
J. Pivko
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
P. Chrenek
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
P. Grafenau
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
L'. Ríha
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
A. V. Sirotkin
Affiliation:
Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic.
F. Louda
Affiliation:
Research Institute for Cattle Breeding Ltd., Rapotín, Vikýřovice 78813, Czech Republic.
*
All correspondence to: E. Kubovičová. Slovak Agricultural Research Centre, Hlohovská 2, 949 92 Nitra, Slovak Republic. Tel: +421 37 6546 276. Fax: +421 37 6546 480. e-mail: [email protected]

Summary

The aim of the present study was to evaluate the development and ultrastructure of preimplantation bovine embryos that were exposed to bovine viral diarrhea virus (BVDV) in vitro.

The embryos were recovered from superovulated and fertilized Holstein-Friesian donor cows on day 6 of the estrous cycle. Compact morulae were microinjected with 20 pl of BVDV suspension (105.16 TCID50/ml viral stock diluted 1:4) under the zona pellucida (ZP), then washed in SOF medium and cultured for 24–48 h. Embryos were evaluated for developmental stages and then processed immunocytochemically for the presence of viral particles, using fluorescent anti-BVDV–FITC conjugate. Ultrastructure of cellular organelles was analysed by transmission electron microscopy (TEM).

After microinjection of BVDV under the ZP, significantly more (p < 0.001) embryos (83.33%) were arrested at the morula stage compared with the intact control (30.33%). Immunocytochemical analysis localized the BVDV–FITC signal inside the microinjected embryos. TEM revealed: (i) the presence of virus-like particles in the dilated endoplasmic reticulum and in cytoplasmic vacuoles of the trophoblast and embryoblast cells; (ii) the loss of microarchitecture: and (iii) abnormal disintegrated nuclei, which lacked reticular structure and the heterochromatin area. In all, the embryo nuclear structure was altered and the microarchitecture of the nucleolus had disappeared when compared with the nuclei from control embryos. Dilatation of the intercellular space and the loss of the intercellular gap junctions were often observed in bovine BVDV-exposed embryos.

These findings provide evidence for the adverse effect of BVDV virus on the development of bovine embryos, which is related to irreversible changes in the ultrastructure of cell organelles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, I.F., Fulton, R.W., Seger, C.L. & Godke, L.A. (1979). Effect of the bovine viral diarrhea (BVD) virus on preimplantation bovine embryo: a preliminary study. Theriogenology 11, 81–9.CrossRefGoogle Scholar
Bak, A., Callesen, H., Myeling, A. & Greve, T. (1992). Calves born after embryo transfer from donors persistently infected with BVD virus. J. Natl. Cancer Inst. 131, 37.Google ScholarPubMed
Bielanski, A. & Hare, W.C.D. (1988). Effect in vitro of bovine viral diarrhea virus on bovine embryos with the zona pellucida intact, damaged and removed. Vet. Res. Commun. 12, 1924.CrossRefGoogle ScholarPubMed
Bielanski, A. & Jordan, I. (1996). Washing or washing and trypsin treatment is ineffective for removal of non-cytopathic bovine viral diarrhea virus from bovine oocytes or embryos after experimental viral contamination of an in vitro fertilization system. Theriogenology 46, 1467–76.CrossRefGoogle Scholar
Bielanski, A., Dubuc, C. & Hare, W.C.D. (1992). Failure to remove of bovine viral diarrhoea virus (BVDV) from bull semen by swim-up and other separatory sperm techniques associated with in vitro fertilization. Reprod. Dom. Anim. 27, 303–6.CrossRefGoogle Scholar
Bielanski, A., Sapp, T. & Lutze-Wallace, C. (1998). Association of bovine embryos produced by in vitro fertilization with noncytopathic strain of bovine viral diarrhea virus type II. Theriogenology 49, 1231–8.CrossRefGoogle ScholarPubMed
Bolin, S.R. & Ridpath, J.F. (1996). The clinical significance of genetic variation among bovine viral diarrhea viruses. Vet. Med. 91, 958–61.Google Scholar
Brock, K.V. & Stringfellow, D.A. (1993). Comparative effects of cytopathic and non-cytopathic bovine viral diarrhea virus on bovine blastocysts. Theriogenology 39, 109.CrossRefGoogle Scholar
Brownlie, J., Clarke, M.C. & Howard, C.J. (1984). Experimental production of fatal mucosal disease in cattle. Vet. Res. 114, 535–6.Google ScholarPubMed
Deregt, D. & Loewen, K.G. (1995). Bovine viral diarrhea virus: biotypes and disease. Can. Vet. J. 140, 371–9.Google Scholar
Fair, T., Hyttel, P. & Greve, T. (1995). Bovine oocyte diameter in relation to maturation competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–42.CrossRefGoogle ScholarPubMed
Gillespie, J.H., Schlafer, D.H., Foote, R.H., Quick, S., Dougherty, E., Schiff, E. & Allen, S. (1990). Comparison of persistence of seven bovine viruses on bovine embryos following in vitro exposure. Dtsch. Tierarztl. Wochenschr. Feb. 97, 65–8.Google ScholarPubMed
Gilula, N., Epstein, M. & Beers, W. (1978). Cell–cell communication and ovulation: a study of the cumulus cell oocyte complex. J. Cell Biol. 78, 5875.CrossRefGoogle Scholar
Leconte, C., Navetai, H., Harners, C., Lamôot, M., Scheider, F., Cabanie, E. & Pestroet, P.P. (1996). Isolement du virus de la diarrhée virale bovine de deure cas de syndromes hémorragiques, chez des bovine de race cherolaine. Ann. Med. Vet. 140, 435–8.Google Scholar
McGowan, M.R., Kirkland, P.D., Richards, S.G. & Littlejohns, I.R. (1993). Increased reproductive losses in cattle infected with bovine pestivirus around the time of insemination. Vet. Res. 135, 3943.Google Scholar
Ohmann, H.B. (1990). Electron microscopy of bovine virus diarrhoea virus. Rev. Sci. Tech. 8, 6171.CrossRefGoogle Scholar
Ohmann, H.B. & Bloch, B. (1982). Electron microscopic studies of bovine viral diarrhea virus in tissues of diseased calves and cell cultures. Arch. Virol. 71, 5774.CrossRefGoogle Scholar
Potter, M.I., Corstvet, R.E., Looney, C.R., Fulton, R.W., Archibald, L.F. & Godke, R.A. (1984). Evaluation of BVDV uptake by preimplantation embryos. Am. J. Vet. Res. 45, 1778–80.Google Scholar
Schlafer, D.H., Gillespie, J.H., Foote, R.H., Quick, S., Pennow, N.N., Dougherby, E.P., Schiff, E.I., Allen, S.E., Powers, P.A., Hall, C.E. et al. (1990). Experimental transmission of bovine viral diseases by insemination with contaminated semen or during embryo transfer. Dtsch. Tierarzel. Wochen schr. Feb. 97, 6872.Google ScholarPubMed
Singh, E.L., Eaglesome, V.D., Thomas, F.C., Papp-Vid, G. & Hare, W.C.D. (1982). Embryo transfer as a means of controlling the transmission of viral infections. II. The in vitro exposure of preimplantation bovine embryos to infectious bovine rhinotracheitis virus. Theriogenology 18, 133–40.CrossRefGoogle ScholarPubMed
Subramanian, A., Devanjan, K.P. & Mohaman, M. (1990). Incidence and evidence of zona fracture in cryopreserved bovine ova and embryos. N. Z. Vet. J. 38, 156–7.CrossRefGoogle Scholar
Trachte, E.A., Stringfellow, D.A., Riddell, K.P., Gulik, P.K., Riddell, M.G. & Wright, J.C. (1997). Washing and trypsin treatment of IVF bovine embryos exposed to bovine viral diarrhea virus. Theriogenology 67, 383.CrossRefGoogle Scholar
Van Soom, A., Vanobdeobosch, E., Mahmoudzadeh, A.R. & de Kruif, A. (1996). In vitro production of Belgian Blue cattle embryos: some data on the risk of the viral infection. Vlaams Diergeniskd Tijdschr. 63, 139–45.Google Scholar
Vanroose, G., Nauwynek, H., Van Soom, A., Vanopdenbosch, E. & de Kruif, A. (1998). Replication of cytopathic and noncytopathic bovine viral diarrhea virus in zona-free and zona-intact in vitro-produced bovine embryos and the effect on embryo quality. Biol. Reprod. 58, 857–66.CrossRefGoogle ScholarPubMed
Vanroose, G., Nauyuck, H., Van Soom, A., Vanopdenbosch, E. & de Kruif, A. (1999). Effect of bovine herpesvirus-1 or bovine viral diarrhea virus or development of in vitro-produced bovine embryos. Mol. Reprod. Dev. 54, 255–63.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Vanroose, G., Nauvynck, H., Van Soom, A., Ysebaert, M.T., Charlier, G., Van Oostveldt, P. & de Kruif, A. (2000). Structural aspects of the zona pellucida of in vitro-produced bovine embryos: A scanning electron and confocal laser scanning microscopy. Biol. Reprod. 62, 463–9.CrossRefGoogle Scholar
Wright, J. (1998). Photomicrographic illustration of embryo codes. In Manual of the International Embryo Transfer Society, 3rd edn, (eds. Stringfellow, D.A. & Saidel, S.M.), pp. 167–70. Savory, Illinois: International Embryo Transfer Society, Inc.Google Scholar