Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T17:11:13.108Z Has data issue: false hasContentIssue false

Activated caspases are present in frozen–thawed canine sperm and may be related to post thaw sperm quality

Published online by Cambridge University Press:  06 May 2009

A. Sokolowska
Affiliation:
Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
B. Macías García
Affiliation:
Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
L. González Fernández
Affiliation:
Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
C. Ortega-Ferrusola
Affiliation:
Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
J. A. Tapia
Affiliation:
Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
F. J. Peña*
Affiliation:
Section of Reproduction and Obstetrics, Department of Medicine, Faculty of Veterinary Medicine, Avd de la Universidad, s/n10071Cáceres, Spain. Veterinary Teaching Hospital, University of Extremadura, Avd de la Universidad, s/n10071Cáceres, Spain.
*
All correspondence to: F.J. Peña. Section of Reproduction and Obstetrics, Department of Medicine, Faculty of Veterinary Medicine, Avd de la Universidad, s/n10071Cáceres, Spain. e-mail. [email protected]

Summary

The identification of early changes in the sperm plasmalemma is currently a factor in the improvement of freezing protocols. We analysed the presence of active caspases in freeze–thawed (FT) dog spermatozoa, and evaluated straws from eight dogs using flow cytometry and fluorescence microscopy with fluorescein isothyocyanate–Val–Ala–Asp–fluoromethylketone (FITC–VAD–fmk) combined with ethidum homodimers. Apoptotic-like changes were evaluated using the YO–PRO-1/ethidium homodimer combination, and changes in mitochondrial membrane potential were monitored with JC-1. Sperm motility post-thaw was evaluated using a CASA system. FITC–VAD–fmk stained sperm cells in situ and the subcellular labelling pattern was consistent with known localization of caspases. On average, a high proportion of FT canine sperm showed caspase activity, ranging from 30.2 to 70.7% of the live sperm compared with 7.3 to 24.0% in dead spermatozoa. This observed differentiation between caspase activity in dead and live spermatozoa may be a simple method to disclose subtle differences in sperm quality, since this staining allowed us to find statistically significant differences among dogs. Notably, the sperm sample with overall better results in all sperm parameters studied after thawing had a lower percentage of active caspases in both dead and live spermatozoa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cisternas, P. & Moreno, R.D. (2006). Comparative analysis of apoptotic pathways in rat mouse and hamster spermatozoa. Mol. Reprod. Develop. 73, 1318–25.CrossRefGoogle ScholarPubMed
Cyali, S., Sakkas, D., Vigue, L., Demir, L. & Huszar, G. (2004). Cellular maturity and apoptosis in human sperm: creatine kinase, caspase-3 and BCL-XL levels in mature and diminished maturity sperm. Mol. Hum. Reprod. 10, 365–72.Google Scholar
Desagher, S. & Martinou, J.C. (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–77.CrossRefGoogle Scholar
Grunewald, S., Paasch, U., Said, T.M., Sharma, RK., Glandler, H.J. & Agarwal, A. (2005). Caspase activation in human spermatozoa in response to physiological and pathological stimuli. Fertil. Steril. Suppl. 1, 1106–12.CrossRefGoogle Scholar
Holt, W.V. & Van Look, K.J.W. (2004). Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction 127, 527535.CrossRefGoogle ScholarPubMed
Hu, X.Y., Xu, Y.M., Qiao, Y., Wu, D.L., Sa, Y.L., Fu, Q., Yu, J.J., Zhang, X.R., Zhang, J., Gu, B.J., Chen, R. & Xie, H. (2006). Reduced semen quality in chronic prostatitis patients that induce the release of apoptotic protein Omi/HtrA2 from spermatozoa. Prostate cancer and prostatic diseases. doi:10.1038/sj.pcan.4500919.CrossRefGoogle Scholar
Idziorek, T., Estaquier, J., de Bels, F. & Ameisen, JC. (1995). YOPRO-1 permits cytofluorometric analysis of programmed cell dead (apoptosis) without interfering with cell viability. J. Immunol. Meth. 185, 249–85.CrossRefGoogle ScholarPubMed
Konrad, L., Keilani, M.M., Laible, L., Nottelmann, U. & Hofmann, R. (2006). Effects of TGF betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro. Apoptosis 11, 739–48.CrossRefGoogle Scholar
Marchetti, C., Gallego, M.A., Defossez, A., Formstecher, P. & Marchetti, P. (2004). Staining of human sperm with fluorochrome labelled inhibitor of caspases: correlation with apoptosis and sperm parameters. Hum. Reprod. 19, 1127–34.CrossRefGoogle ScholarPubMed
Marti, E., Perez Pe, R., Muiño Blanco, T. & Cebrian Perez, JA. (2006). Comparative study of four different sperm washing methods using apoptotic makers in ram spermatozoa. J. Androl. 27, 746–53.CrossRefGoogle Scholar
Martin, G., Cagnon, N., Sabido, O., Sion, B., Grizard, G., Durand, P. & Levy, R. (2007). Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Hum. Reprod. 22, 380–8.CrossRefGoogle ScholarPubMed
Martin, G., Sabido, O, Durand, Ph. & Levy, R. (2004). Cryopreservation induces an apoptosis like mechanism in bull sperm. Biol. Reprod. 71, 2837.CrossRefGoogle ScholarPubMed
Martin, G., Sabido, O., Durand, P. & Levy, R. (2005). Phosphatidylserine externalization in human semen induced by calcium ionophore A23187: relationship with apoptosis, membrane scrambling and the acrosome reaction. Biol. Reprod. 20, 3459–68.Google Scholar
Mazur, P. (1984). Freezing of living cells: mechanism and implications. Am. J. Physiol. 16, C12542.CrossRefGoogle Scholar
Núñez Martinez, I., Morán, J.M. & Pena, F.J. (2007). Sperm indexes obtained using computer assisted morphometry provide a forecast of the freezeability of canine sperm. Int. J. Androl. 30, 182–9.CrossRefGoogle Scholar
Núñez Martinez, I., Moran, J.M. & Peña, F.J. (2005). Do computer assisted derived morphometric sperm characteristics reflect DNA status in canine spermatozoa? Reprod. Dom. Anim. 40, 3743.CrossRefGoogle ScholarPubMed
Núñez Martinez, I., Moran, J.M. & Peña, F.J. (2006). A three step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation. Reprod. Dom. Anim. 41, 408–15.CrossRefGoogle ScholarPubMed
Núñez-Martínez, I., Morán, J.M. & Peña, F.J. (2006). Two step cluster procedure after principal component analysis identifies sperm subpopulations in canine ejaculates and its relation to cryoresistance. J. Androl. 27, 596603.CrossRefGoogle Scholar
Ormerod, M.G., Sun, X.M., Snowden, R.T., Davies, R., Fearnhead, H. & Cohen, G.M. (1993). Increased membrane permeability of apoptotic thymocites: a flow cytometric study. Cytometry 14, 595602.CrossRefGoogle Scholar
Ortega-Ferrusola, C., Sotillo-Galán, Y., Varela–Fernández, E., Gallardo-Bolaños, J.M., González-Fernández, L., Tapia, J.A. & Peña, F.J. (2008). Detection of apoptosis like changes during the cryopreservation process in equine sperm. J. Androl. 29, 213–21.CrossRefGoogle ScholarPubMed
Paasch, U., Sharma, R.K., Gupta, A.K., Grunewald, S., Mascha, E.J., Thomas, A.J., Glander, H.J. & Agarwal, A. (2004). Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol. Reprod. 71, 1828–37.CrossRefGoogle ScholarPubMed
Peña, A. & Linde-Forsberg, C. (2000). Effect of spermatozoal concentration and post-thaw dilution rate on survival after thawing of dog spermatozoa. Theriogenology 54, 703–18.CrossRefGoogle ScholarPubMed
Peña, A.I. (2004). Canine fresh and cryopreserved evaluation. Anim. Reprod. Sci. 82–3, 209–24.Google Scholar
Peña, F.J., Johanisson, A., Wallgren, M. & Rodriguez Martinez, H. (2003). Antioxidant supplementation in vitro improves boar sperm motility, and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 78, 85–8.CrossRefGoogle ScholarPubMed
Peña, F.J., Johannisson, A., Wallgren, M. & Rodriguez Martinez, H. (2003). Assessment of fresh and frozen thawed boar semen using an annexin assay: a new method of evaluating sperm membrane integrity. Theriogenology 60, 677–89.CrossRefGoogle ScholarPubMed
Peña, F.J., Johannisson, A., Wallgren, M. & Rodriguez Martinez, H. (2004). Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: changes in sperm membrane lipid architecture. Zygote 12, 117–27.CrossRefGoogle ScholarPubMed
Peña, F.J., Johannisson, A., Wallgren, M. & Rodriguez Martinez, H. (2005). A new and simple method to evaluate early membrane changes in frozen–thawed boar spermatozoa. Int. J. Androl. 28, 107–14.CrossRefGoogle ScholarPubMed
Pena, F.J., Núñez Martinez, I. & Morán, J.M. (2006). Semen technologies in dog breeding: an update. Reprod. Dom. Anim. 41 (S2), 21–9.CrossRefGoogle ScholarPubMed
Said, T.M., Paasch, U., Glander, H.J. & Agarwal, A. (2004). Role of caspases in male infertility. Hum. Reprod. Update 10, 3951.CrossRefGoogle ScholarPubMed
Watson, P.F. (2000). The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60–1, 481–92.CrossRefGoogle ScholarPubMed
Wronski, R., Golob, N., Grygar, E. & Winsdish, M. (2002). Two color, fluorescence-based microplate assay for apoptosis detection. Biotechniques 32, 666–68.Google ScholarPubMed
Wundrich, K., Paasch, U., Leicht, M. & Glander, H.J. (2006). Activation of caspases in human spermatozoa during cryopreservation: an inmunoblot study. Cell Tissue Bank 7, 8190.CrossRefGoogle Scholar
Zheng, S., Turner, T.T. & Lysiak, J.J. (2006). Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol. Reprod. 74, 1026–33.CrossRefGoogle Scholar