Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T06:49:02.934Z Has data issue: false hasContentIssue false

Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase

Published online by Cambridge University Press:  19 August 2002

Nobuyuki Kanayama
Affiliation:
The Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
Takashi Miyano
Affiliation:
Laboratory of Reproductive Biology & Biotechnology, Faculty of Agriculture, Kobe University Kobe 657-8501, Japan
Jibak Lee
Affiliation:
The Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan

Abstract

Meiotic maturation of mammalian oocytes is under the control of cell cycle molecules Cdc2 kinase and MAP kinase (mitogen-activated protein kinase). In the present study, we investigated the relationship between the ability to activate Cdc2 kinase and MAP kinase and the acquisition of meiotic competence during pig oocyte growth. Growing and fully grown pig oocytes were collected from four groups of antral follicles of various diameters (A, 0.5-0.7 mm; B, 1.0-1.5 mm; C, 2.0-2.5 mm; D, 4.0-6.0 mm) and cultured in vitro. Fully grown oocytes from class D follicles, which have full competence to mature to metaphase II, had the ability to activate both Cdc2 kinase and MAP kinase. In contrast, growing oocytes from class A follicles, which have limited competence to resume meiosis, had no such ability. Cyclin B1 molecules did accumulate, however, with phosphorylated 35 and 36 kDa bands of p34cdc2 appearing in the cultured oocytes. Of the growing oocytes from class B follicles, 60% resumed meiosis but arrested at metaphase I. Some of the oocytes in this class were capable of activating Cdc2 kinase, although they did not appear to have established a MAP kinase-activating pathway or the ability to activate MEK. These results suggest that limited meiotic competence in growing oocytes from class A follicles is due to their inability to activate Cdc2 kinase and their incomplete MEK-MAP-kinase pathway, although the oocytes are capable of accumulating cyclin B1 molecules. During the final growth phase, pig oocytes acquire the ability to activate Cdc2 kinase and then establish the MEK-MAP-kinase pathway for full meiotic competence.

Type
Research Article
Copyright
2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)