Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T07:34:12.390Z Has data issue: false hasContentIssue false

Ultrastructure of the oviductal mucosa of Leptodactylus chaquensis. Analysis of the preovulatory and postovulatory periods

Published online by Cambridge University Press:  25 June 2014

Marcela Fátima Medina
Affiliation:
Instituto de Biología. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
Inés Ramos
Affiliation:
Instituto de Biología. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina. Instituto Superior de Investigaciones Biológicas (INSIBIO)-UNT, Chacabuco 461, Tucumán 4,000, Argentina.
Claudia A. Crespo
Affiliation:
Instituto de Biología. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
Susana Cisint
Affiliation:
Instituto de Biología. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
Lucrecia Iruzubieta Villagra
Affiliation:
Instituto de Biología. Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina.
Silvia Nélida Fernández*
Affiliation:
Chacabuco 461, 4000 – S.M. de Tucumán, Argentina. Instituto Superior de Investigaciones Biológicas (INSIBIO)-UNT, Chacabuco 461, Tucumán 4,000, Argentina.
*
All correspondence to: Silvia N. Fernández. Chacabuco 461, 4000 – S.M. de Tucumán, Argentina. Fax: +54 381 4248025. e-mail: [email protected]

Summary

In the present study we analysed the ultrastructural characteristics of the oviductal mucosa of Leptodactylus chaquensis during the preovulatory period and immediately after ovulation. Epithelial secretory cells, ciliated cells, basal cells and glandular secretory cells are described. During the preovulatory period, the oviduct exhibits its maximum degree of development at both the epithelial and the glandular levels, with numerous secretory cells that contain a large number of secretory granules whose contents are released into the oviductal lumen by apocrine and exocytotic secretory processes. The secretory cells present throughout the oviduct display considerable variability in the characteristics of their secretory granules, which show different shapes, sizes, organization of the material contained and electron density. The different cell types are distributed following a characteristic pattern for each oviductal zone, thus creating an ultrastructural mosaic along the oviduct. During the postovulatory period, the number of secretory cells decreases and the remaining ones exhibit a marked reduction in secretory granules. Ciliated cells show a typical ultrastructural organization that is not modified throughout the reproductive cycle. Basal cells, located at the basal region of the epithelium, are characterized by their heterochromatic nuclei and electron-lucent cytoplasm, while glandular secretory cells exhibit oval, round or polyhedric granules, most of them with a prominent core. Our results, which indicate a high heterogeneity of secretory cell contents, allow us to suggest differential synthesis and secretion of specific products in each oviductal zone.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcaide de Pucci, M.F. (1991a). Aspectos histoquímicos del oviducto de Leptodactylus chaquensis (Cei). Acta Zool. Lilloana 40, 109–15.Google Scholar
Alcaide de Pucci, M.F. (1991b). Aspectos histomorfológicos del oviducto de Leptodactylus chaquensis (Cei). Acta Zool. Lilloana 40, 117–23.Google Scholar
Barbieri, F.D. & Budeguer de Atenor, M.S. (1973). Role of oviducal secretions in the fertilization of Bufo arenarum oocytes. Arch. Biol. (Bruxelles) 84, 501–11.Google Scholar
Crespo, C.A., Ramos, I., Medina, M.F. & Fernández, S.N. (2009). Analysis of Bufo arenarum oviductal secretion during the sexual cycle. Zygote 17, 329–40.CrossRefGoogle ScholarPubMed
Del Pino, E.M. (1973). Interactions between gametes and environment in the toad Xenopus laevis (Daudin) and their relationship to fertilization. J. Exp. Zool. 185, 121–31.CrossRefGoogle Scholar
Elinson, R.P. (1974). A block to cross-fertilization located in the egg jelly of the frog Rana clamitans. J. Embryol. Exp. Morphol. 32, 325–35.Google ScholarPubMed
Fernández, S.N., Mansilla, Z.C. & Miceli, D.C. (1989). Correlation between the sexual cycle and ultrastructure of Bufo arenarum oviducal pars recta epithelium. Microsc. Electron. Biol. Cell 13, 211–20.Google Scholar
Fernández, S.N. & Ramos, I. (2003). Endocrinology of reproduction. In Reproductive Biology and Phylogeny of Anura (ed. Jamieson, B.G.M.), pp. 73117. Enfield, New Hampshire, USA: Science Publisher, Inc.Google Scholar
Frazier, B.A., Pfeifer, J.D., Russell, D.G., Falk, P., Olsen, A.N., Hammar, M., Westblom, T.U. & Normark, S.J. (1993). Paracrystalline inclusions of a novel ferritin containing nonheme iron, produced by the human gastric pathogen Helicobacter pylori: evidence for a third class of ferritins. J. Bacteriol. 175, 966–72.CrossRefGoogle ScholarPubMed
Hardy, D.M. & Hedrick, J.L. (1992). Oviductin. Purification and properties of the oviductal protease that processes the molecular weight 43,000 glycoprotein of the Xenopus laevis egg envelope. Biochemistry 31, 4466–72.CrossRefGoogle Scholar
Hedrick, J.L. & Nishihara, T. (1991). Structure and function of the extracellular matrix of anuran eggs. J. Electron. Microsc. Tech. 17, 319–35.CrossRefGoogle ScholarPubMed
Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists (2004). Guidelines for the Use of Live Amphibians and Reptiles in Field and Laboratory Research http://iacuc.ucsd.edu/pdf_references/asih-hl-sar%20guidelines%20for%20use%200f%201ive%20amphibians%20and%20reptiles.htmGoogle Scholar
Ishihara, K., Hosono, J., Kanatani, H. & Katagiri, C. (1984). Toad egg-jelly as a source of divalent cations essential for fertilization. Dev. Biol. 105, 435–42.CrossRefGoogle ScholarPubMed
Katagiri, C., Iwao, Y. & Yoshizaki, N. (1982). Participation of oviducal pars recta secretions in inducing the acrosome reaction and release of vitelline coat lysin in fertilizing toad sperm. Dev. Biol. 94, 110.CrossRefGoogle ScholarPubMed
Katagiri, C. (1987). Role of oviducal secretions in mediating gamete fusion in Anura amphibians. Zool. Sci. 4, 114.Google Scholar
Medina, M.F., Winik, B.C., Crespo, C.A., Ramos, I. & Fernández, S.N. (2000). Subcellular localization of a Ca-ATPase and calcium in Bufo arenarum oviducts. Acta Histochem. Cytochem. 33, 4958.CrossRefGoogle Scholar
Medina, M.F., Crespo, C.A., Ramos, I. & Fernández, S.N. (2007). Effect of steroid hormones on Bufo arenarum oviduct. Ultrastructural study. J. Exp. Zool. 307, 312–23.CrossRefGoogle ScholarPubMed
Medina, M.F., Crespo, C.A., Ramos, I. & Fernández, S.N. (2012). Effect of oviductal secretion components on the fertilizing capacity of amphibian sperm. biological and ultrastructural studies. Micron 43, 223–8.CrossRefGoogle ScholarPubMed
Miceli, D.C., Fernández, S.N. & Del Pino, E.J. (1978). An oviductal enzyme isolated by affinity chromatography which acts upon the vitelline envelope of Bufo arenarum coelomic oocyte. Biochim. Biophys. Acta. 526, 289–92.CrossRefGoogle Scholar
Miceli, D.C., Fernández, S.N., Mansilla, Z.C. & Cabada, M.O. (1987). New evidence of anuran oviductal pars recta involvement on gamete interaction. J. Exp. Zool. 244, 125–32.CrossRefGoogle Scholar
Nistal, M., Garcia-Rodeja, E. & Paniagua, R. (1991). Granular transformation of Sertoli cells in testicular disorders. Hum. Pathol. 22, 131–7.CrossRefGoogle ScholarPubMed
Odor, D.L. (1982). Migratory cells and large heterogeneous dense bodies in the oviductal epithelium of primates. Anat. Rec. 204, 402.Google Scholar
Sakai, H., Horinouchi, H., Tomiyama, K., Ikeda, E., Takeoka, S., Kobayashi, K. & Tsuchida, E. (2001). Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am. J. Pathol. 159, 1079–88.CrossRefGoogle ScholarPubMed
Shivers, C.A. & James, J.M. (1970). Morphology and histochemistry of the oviduct and egg-jelly layers in the frog Rana pipiens. Anat. Rec. 166, 541–56.CrossRefGoogle ScholarPubMed
Takamune, K., Yoshizaki, N. & Katagiri, K. (1986). Oviductal pars recta-induced degradation of vitelline coat proteins in relation to acquisition of fertilizability of toad eggs. Gamete Res. 14, 215–24.CrossRefGoogle Scholar
Takamune, K. & Katagiri, C. (1987). The properties of the oviductal pars recta which mediates gamete interaction by affecting the vitelline coat toad egg. Dev. Growth Differ. 29, 193203.CrossRefGoogle ScholarPubMed
Theil, E.C. (1987). Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56, 289315.CrossRefGoogle ScholarPubMed
Van Manen, H.J., Kraan, Y.M., Roos, D. & Otto, C. (2005). Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Natl. Acad. Sci. USA. 102, 10159–64.CrossRefGoogle ScholarPubMed
Winik, B., Alcaide, M.F., Crespo, C., Medina, M.F., Ramos, I. & Fernández, S.N. (1999). Ultrastructural changes in the oviduct during the sexual cycle in Bufo arenarum. J. Morphol. 239, 6173.3.0.CO;2-N>CrossRefGoogle Scholar
Xiang, X., Burnett, L., Rawls, A., Bieber, A. & Chandler, D. (2004). The sperm chemoattractant “allurin” is expressed and secreted from the Xenopus oviduct in a hormone-regulated manner. Dev. Biol. 275, 343–55.CrossRefGoogle Scholar
Yoshizaki, N. & Katagiri, C. (1981). Oviductal contribution to alteration of the vitelline coat in the frog, Rana japonica. An electron microscopic study. Dev. Growth Differ. 23, 495506.CrossRefGoogle ScholarPubMed
Yoshizaki, N. (1985). Fine structure of oviducal epithelium of Xenopus laevis in relation to its role in secreting egg envelopes. J. Morphol. 184, 155–69.CrossRefGoogle ScholarPubMed