Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T13:14:55.416Z Has data issue: false hasContentIssue false

Ultrastructural studies of early mouse embryos obtained by oocyte fusion

Published online by Cambridge University Press:  26 September 2008

Carme Nogués*
Affiliation:
Departament de Biology cellular i Fisiologia and Institut de Biologia Fonamental‘V. Villar Palasi’, Universitat Autònoma de Barcelona, Barcelona, Spain.
Montserrat ponsà
Affiliation:
Departament de Biology cellular i Fisiologia and Institut de Biologia Fonamental‘V. Villar Palasi’, Universitat Autònoma de Barcelona, Barcelona, Spain.
Josep Egozcue
Affiliation:
Departament de Biology cellular i Fisiologia and Institut de Biologia Fonamental‘V. Villar Palasi’, Universitat Autònoma de Barcelona, Barcelona, Spain.
Francesa Vidal
Affiliation:
Departament de Biology cellular i Fisiologia and Institut de Biologia Fonamental‘V. Villar Palasi’, Universitat Autònoma de Barcelona, Barcelona, Spain.
*
Dr. Carme Noguè, Departament de Biologia Cellualr Fisiologia, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain. Tel: 34-3-581.27.82 Fax: 34-3-581.22.95.

Summary

Oocyte fusion induced by inactivated Sendai virus results in the production of ‘zygotes’that are able to undergo the first stages of embryonic development. The oocyte fusion products (OFP) obtained follow a morphological developmental pattern equivalent to that of control embryos, at least up to the 8-cell stage. The percentage of OFP that reach the 8-cell stage is extremely low(3%)compared with control embryos cultured in vitro(95%). On light microscopy, the OFP obtained show morphological characteristics identical to control embryos, although their cell diameters are larger. The cortical reaction, meiotic reactivation, extrusion of second polar bodies and pronucleus formation take place as observed in controls. The ultrastructural characteristics of oocyte fusion products at the 1-2-4- and 8- cell stages are analogous to those of controls, including the presence of structures related to the activation of the embryo genome. However some differences concerning cell ultrastructure, mainly in the nucleus, are observed and discussed in the text.

Type
Commentary
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E., Hope, P.C., Whitten, W.K. & Lee, G.S. (1975) In vitro fertilization and early embryogensis: a cytological analysis, I. Ultrastuct. Res. 50, 231–52.CrossRefGoogle Scholar
Calarco, P.G. & Brown, E.H. (1969). An ultrastructural and cytological study of preimplantation development of the mouse. J. Exp. Zool. 171, 253–83.CrossRefGoogle ScholarPubMed
Cran, D.G. (1985). Qualitative and quantitative structural changes during pig oocyte maturation J. Reprod. Fert. 74, 237–45.CrossRefGoogle ScholarPubMed
Ducibella, T., Ukena, T., Karnovsky, M. & Anderson, E. (1977). Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J. Cell Biol. 74, 153–67.CrossRefGoogle ScholarPubMed
Dvorak, M. (1989). Ultrastructure and quantitative analysis of mouse and human oocytes In Development in Ultrastructure of Reproduction Motta, P.M.273–80 New YoekAlan R.Liss.Google Scholar
Enders, A.C. & Schlafke, S.J. (1965) The fine structure of the blastocyst:some comparative studies. In preimplantation Stages of Pregnancy ed. Wolstenholme, G.E.W. &O&connor, M., pp.2954. BostonLittle Brown.Google Scholar
Fisher, D. & Goodall, A.H. (1981). Membrane fusion by viruses and chemical agents. In Techniques in Cellular Physiology Fisher, D. & Goodall, A.H., pp.136. County Clare Elsevier/North-HollandGoogle Scholar
Gulyas, B.J. (1980). Cortical granules of mammalian eggs. Int. Rev. Cytol. 63, 357–92.CrossRefGoogle ScholarPubMed
Gulyas, B.J. (1986). Oocyte fusion. In Developmental Biology:A Comprehensive Synthesis vol. 4, Manipulation of Mammalian Development, ed. Gwatkin, R.B.L., pp. 5780. New York: Plenum press.Google Scholar
Gulyas, B.J., Wood, M. & Whittingham, D.G. (1984). Fusion of oocytes and development of oocyte fusion products in the mouse. Dev. Biol. 101, 246–50.CrossRefGoogle ScholarPubMed
Hillman, N. & Tasca, R.J. (1969). Ultrastctual and autoradiographic studies of mouse cleavage stages. Am. J. Anat. 126, 151–73.CrossRefGoogle ScholarPubMed
Hogan, B., Constantini, F. & Lacy, E. (1986). Manipulating the Mouse Embryo. A Laboratory Manual Hogan, B., Constantini, F. & Lacy, E.New York: cold spring Harbor Laboratory.Google Scholar
Hyttel, P., Greve, T. & Callensen, H. (1988a). Ultrastructure of in vivo fertilization in superovulated cattle. J. Reprod. Fert. 82, 113.CrossRefGoogle ScholarPubMed
Hyttel, P., Xu, K.P. &Greve, T. (1988b).Ultrastuctural abnormalities of in vitro fertilization of in vitro matured bovine oocytes. Anat. Embryol. 178, 4752.CrossRefGoogle Scholar
Johnson, M.H. (1986). Manipulation of early mammalian development:what does it tell us about cell lineages. In Developmental Biology: A Comprehensive Synthesis vol. 4, Manipulation of Mammalian Development Gwatkin, R.B.L., pp. 279–96. New Yorkplenum press,Google Scholar
Knutton, S., & Pasterna, C.A. (1979). The mechanism of cell-cell fusion. TIBS [Oct], 220–3.Google Scholar
Muggleton-Harris, A.L. & Brown, J.J.G. (1988). Cytoplasmic factors influence mitochondrial reorganization and resumption of cleavage during culture of early mouse embryos. Hum.Reprod. 3, 1020–8.CrossRefGoogle ScholarPubMed
Pereda, J. (1989). Ultrastructural observation on early human eggs:analysis of four concepti. In Development in Ultrastructure of Reproduction, ed. Motta, P.M. pp.367–79. New York: Alan R Liss.Google Scholar
Ponsà, M. & Boada, M. (1987). Ultrastructural studies of human zygotes. In Cell Biology Reviews, vol. 13 Celluar Aspects of In Vitro Fertilization: Ultrastructural and cytogenetic studies of Human Gametes and Zygotes ed. Egozcue, J. pp. 32–8. Bilbao: Springer International.Google Scholar
Ponsà, M., Nogueés, C., Vidal, F. & Egozcue, J. (1991). Scanning electorn microscope(SEM) study of mouse embryos obtained from isolated blastomeres J. In Vitro Fert. Embryo Transfer. 8, 279–85.CrossRefGoogle Scholar
Quinn, P., Barros, C. & Whittingham, D.G. (1982). Preservation of hamster oocytes to assay the fertilizing capacity of human reproduction. J.Reprod. Fert. 66, 161–8.CrossRefGoogle Scholar
Reeve, W.J. (1981). Cytoplasmic polarity develops at compaction in rat and mouse embryos. J.Embryol. Exp. Morphol. 62, 351–67.Google ScholarPubMed
Reeve, W.I.&Kelly, F.P. (1983). Nuclear position in the cells of the mouse early embryo. J. Embryol. Exp. Morphol. 75, 117–39.Google ScholarPubMed
Reynold, E.S. (1963). The use of lead citrate at high pH as an election-opaque stain in electron microscopy. J. Cell Biol. 17, 208.CrossRefGoogle Scholar
Soupart, P. (1982). Initiation of mouse embryonic development by oocyte fusion. In In Vitro Fertilization and Embryo Transfer Hafez, E.S.E. & Senm, K.LancasterMTP press 5163.Google Scholar
Soupart, P. & Strong, P.A. (1974). Ultrastructural observations on human oocytes fertilized in vitro. Fertil. Steril. 25, 1144.CrossRefGoogle ScholarPubMed
Soupart, P., &Strong, P.A. (1975). Ultrastructural observations on polyspermic penetration of zona pellucida-free human oocytes inseminated in vitro. Fertil. Steril. 2, 523–37.CrossRefGoogle Scholar
Stern, S., Biggers, J.D. &Anderson, E. (1971). Mitochondria and early development of the mouse. J. Exp. Zool. 176, 179–92.CrossRefGoogle ScholarPubMed
Szöllösi, M.S. & Szöllösi, D. (1988). ‘Blebbing’ of the nuclear envelope of mouse zygotes, early embryos and hybrid cells. J. Cell Sci. 91, 257–67.CrossRefGoogle ScholarPubMed
Takeuchi, I.K. &Takeuchi, Y.K. (1986). Ultrastructural localization of Ag-NOR proteins in full-grown oocytes and preimplantation embryos of mice. J. Electron Microsc. 35, 280–7.Google ScholarPubMed
Van Blerkom, J. (1989). Development failure in human reproduction associated with preovulatory oogenesis and preimplantation embryogenesis. In Ultrastructure of Human Gametogenesis and Early Embryogenesis, ed. Van Blerkom, J. &Motta, P.M., pp. 125–80. Boston: Kluwer.CrossRefGoogle Scholar
Van Blerkom, J. & Motta, P. (1979). Fertilization and preimplantation embryogenesis. In The Cellular Basis of Mammalian Reproduction, ed. Van Blerkom, J. & Motta, P.. pp. 165–95. Munich: Urban and Schwarzenberg.Google Scholar
Van Blerkom, J., Bell, H., &Henry, G.H. (1987). The occurrence, recognition and development fate of pseudo-multipronuclear eggs after in vitro fertilization of human oocytes. Hum. Reprod. 2, 217–25.CrossRefGoogle ScholarPubMed
Wentz, A.C., Repp, J.E., Maxson, W.S., Pittuay, D.E. & Torbit, C.A. (1983). The problem of polyspermy in vitro fertilization. Fertil. steril. 40, 748–54.CrossRefGoogle ScholarPubMed
Whittingham, D.G. (1971). Culture of mouse ova. J. Reprod. Fert. (Suppl.) 14, 721.Google ScholarPubMed
Wilson, J.M.Caceci, T., Potter, G.D. &Kraemer, D.C. (1987). Ultrastucture of cryopreserved horse embryos. J. Reprod. Fert. (suppl.) 35, 405–17.Google Scholar
Wramsby, H., & Fredga, K. (1987). Chromosome analysis of human oocytes failing to cleave after insemination in vitro Hum. Reprod. 2,137–42.CrossRefGoogle ScholarPubMed
Yotsuyanagi, Y. & Szöllösi, D. (1984). Virus-like particles and related expressions in mammalian oocytes and preimplantation stage embryos. In Ultrastructure of Reproduction, ed. Van Blerkom, J. & Motta, P.M., pp. 218–34. Boston:Martinus Nijhoff.CrossRefGoogle Scholar