Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T12:11:49.521Z Has data issue: false hasContentIssue false

Ultrastructural and immunocytochemical analysis of diploid germ cells isolated from fetal rabbit gonads

Published online by Cambridge University Press:  26 September 2008

André Moens
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Bernadette Fléchon
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Jéril Degrouard
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Xavier Vignon
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Jianchi Ding
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Jacques-Edmond Fléchon*
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Keith James Betteridge
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
Jean-Paul Renard
Affiliation:
INRA, Jouy-en-Josas, France, and Ontario Veterinary College, Canada
*
Dr J.E. Fléchon, Unité de Biologie Cellulaire et de Microscopie Electronique, INRA, Jouy-en-Josas, 78352 Cedex, France. Tel: +33 134652537. Fax: +33 134652241. e-mail: [email protected].

Summary

Germ cells were isolated from rabbit fetal gonads between 18 and 22 days post coitum and examined morphologically, ultrastructurally and for immunocytochemical and cytochemical characteristics. Observations were compared with the information available from the corresponding cells of other mammalian species. The general morphology and ultrastructure of healthy isolated rabbit fetal germ cells were found to be very similar to those of the rabbit and mouse diploid germ cells in situ. Moreover, rabbit fetal germ cells shared common immunocytochemical characteristics with mouse undifferentiated embryonic stem cells or embryonic carcinoma cells, such as the presence of TEC-1 (SSEA-1) antigens, a peripheral network of F-actin, the absence of cytokeratins 8/18 and lamins A/C and an alkaline phosphatase activity. No difference between the sexes was observed. Morphological and physiological similarities with the migrating and cultured primordial germ cells of the mouse also suggest that diploid rabbit germ cells would be good candidates for deriving pluripotential embryonic germ cells (EG cells) if favourable culture conditions could be found. In conclusion, the rabbit may be suitable model for investigations on EG cells in domestic mammals with delayed meiosis.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anegon, I., Moreau, J.F., Godard, A., Jacques, Y., Peyrat, M.A., Hallet, M.M., Wong, G. and Soulillou, J.P.. (1990). Production of human interleukin for DA cells (Hilda/leukemia inhibitory factor, LIF) by activated monocytes. Cell. Immunol. 130, 5065.CrossRefGoogle ScholarPubMed
Bézard, J. & Mauléon, P.. (1984). Evolution des cellules germinales femelles au cours de la prophase meiotique chez le rat: critéres de reconnaissances cytoplasmique et nucléaire des différents stades en histologie fine. Reprod. Nutr. Dev. 24, 633–54.CrossRefGoogle Scholar
Blandau, R.J. & Odor, D.L. (1972). Observations on the behavior of oogonia and oocytes. In Tissue and Organ Culture in Oogenesis, ed. Biggers, J.D. & Schuetz, A.W.301–20. Baltimore: University Park Press.Google Scholar
Blandau, R.J., White, B.J. & Rumery, R.E. (1963). Observations of the movements of the living primordial germ cells in the mouse. Fertil Steril. 14, 482–9.CrossRefGoogle ScholarPubMed
Bosman, F.T.. (1993). Integrins: cell adhesive and modulators of cell function. Histochem. J. 25, 469–77.CrossRefGoogle ScholarPubMed
Byskov, A.G. & Hoyer, P.E. (1994). Embryology of mammalian gonads and ducts. In The Physiology of Reproduction, 2nd edn, ed. Knobil, E & Neil, J., 487540. New York: Raven Press.Google Scholar
Chrétien, F.C. (1966). Etude de l'origine, de la migration et de la multiplication des cellules germinales chez l'embryon de lapin. J. Embryol. Exp. Morphol. 16, 591607.Google Scholar
Chrétien, F.C. (1968). Mise en évidence des gonocytes primordiaux de l'embryon de lapin par leur teneur en phosphatase alcaline. Ann. Embryol. Morphogen. 1, 361–72.Google Scholar
Clark, J.M. & Eddy, E.M. (1975). Fine structural observations on the origin and associations of primordial germ cells of the mouse. Dev. Biol. 47, 136–55.CrossRefGoogle ScholarPubMed
Cooper, H.M., Tamura, R.N. & Quaranta, V. (1991). The major laminin receptor of mouse embryonic stem cells is a novel isoform of the α6β1 integrin. J. Cell. Biol. 115, 843–50.CrossRefGoogle Scholar
De Felici, M., Dolci, S. & Pesce, M. (1992). Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. Int. J. Dev. Biol. 36, 205–13Google ScholarPubMed
Dolci, S.Pesce, M. & De Felici, M. (1993). Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Mol. Reprod. Dev. 35, 134–9.CrossRefGoogle ScholarPubMed
Draber, P. & Pokorna, Z. (1984). Differentiation antigens of mouse teratocarcinoma stem cells defined by monoclonal antibodies. Cell Differ. 15, 109–13.CrossRefGoogle ScholarPubMed
Dufour, S., Duband, J.L., Humphries, M.J., Obara, M., Yamada, K.M. & Thiéry, J.P. (1988). Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. EMBO J. 7, 2661–71.CrossRefGoogle ScholarPubMed
Eddy, E.M., Clark, J.M., Gong, D. & Fenderson, B.A. (1981). Origin and migration of primordial germ cells in mammals. Gamete Res. 6, 333–62.CrossRefGoogle Scholar
Evans, M.J. & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–6.CrossRefGoogle ScholarPubMed
Ffrench-Constant, C., Hollingsworth, A., Heasman, J. & Wylie, C.C. (1991). Response to fibronectin of mouse primordial germ cells before, during and after migration. Development 113, 1365–73.CrossRefGoogle ScholarPubMed
Fléchon, J.E. (1995). Request for a consensus on the definition of putative embryonic stem cells. Mol. Reprod. Dev. 41, 274.CrossRefGoogle Scholar
Fox, N., Damjanov, I., Martinez-Hernandez, A., Knowles, B.B. & Solter, D. (1981). Immunohistochemical localization of the early embryonic antigen (SSEA-1) in preimplantation mouse embryos and fetal and adult tissues. Dev. Biol. 83, 391–8.CrossRefGoogle Scholar
Franke, W.W., Grund, C., Jackson, B.W. & Illmensee, K. (1983). Formation of cytoskeletal elements during mouse embryogenesis. IV Ultrastructure of primary mesenchyme cells and their cell–cell interactions. Differentiation 25, 121–41.CrossRefGoogle ScholarPubMed
Fridmacher, V., Locquet, O. & Magre, S. (1992). Differential expression of acidic cytokeratins 18 and 19 during sexual differentiation of the rat gonad. Development 115, 503–17.CrossRefGoogle Scholar
Fröjdman, K. & Paranko, J., Virtanen, I. & Pelliniemi, L.J. (1993). Intermediate filament proteins and epithelial differentiation in the embryonic ovary of the rat. Differentiation 55, 4755.CrossRefGoogle ScholarPubMed
Fröjdman, K. & Pelliniemi, L.J. (1994). Differential distribution of the α6 subunit of integrins in the development and sexual differentiation of the mouse testis. Dfferentiation 57, 21–9.Google Scholar
Gaffi, C., Lazzari, G., Fléchon, J.E. & Moor, R.M. (1994). Embryonic stem cells in farm mammals. Zygote 2, 385–9.Google Scholar
Gerfen, R.W. & Wheeler, M.B. (1995). Isolation of embryonic cell-lines from porcine blastocysts. Anim. Biotechnol. 6, 114.CrossRefGoogle Scholar
Gomperts, M., Wylie, C. & Heasman, J. (1994). Primordial germ cell migration. Ciba Found. Symp. 182, 121–34.Google ScholarPubMed
Gondos, B. & Byskov, A.G. (1981). Germ cell kinetics in the neonatal rabbit testis. Cell Tissue Res. 215, 143–51.CrossRefGoogle ScholarPubMed
Gondos, B. & Conner, L.A. (1973). Ultrastructure of developing germ cells in the fetal rabbit testis. Am. J. Anat. 136, 2342.CrossRefGoogle ScholarPubMed
Guilly, M.N., Damon, F., Brouet, J.C., Bornens, M. & Courvalin, J.C. (1987). Autoantibodies to nuclear lamin B in a patient with thrombopenia. Eur. J. Cell Biol. 43, 226–72.Google Scholar
Hahnel, A.C. & Eddy, E.M. (1986). Two monoclonal antibody defined cell surface markers of mouse primordial germ cells. Gamete Res. 15, 2534.CrossRefGoogle Scholar
Hogan, B., Costantini, F. & Lacy, E. (1986), Manipulating the Mouse Embryo: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Höger, T.H., Grund, C., Franke, W.W. & Krohne, C. (1991). Immunolocalization of lamins in the thick nuclear lamina of human synovial cells. Eur. J. Cell Biol. 54, 150–6.Google ScholarPubMed
Holthöfer, H., Miettinen, A., Paasivuo, R., Lehto, V.P., Linder, E., Alfthan, O. & Virtanen, I. (1983). Cellular origin and differentiation of renal carcinomas. Lab. Invest. 49, 317–26.Google ScholarPubMed
lannaconne, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D. & Brenin, D.R. (1994). Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 164, 288–92.CrossRefGoogle Scholar
Jeon, K.W. & Kennedy, J.R. (1973). The primordial germ cells in early mouse: light and electron microscopy studies. Dev. Biol. 31, 275–84.CrossRefGoogle Scholar
Kanai, Y., Kawakami, H., Kanai-Azuma, M., Kurohmaru, M., Hirano, H. & Hayashi, Y. (1992). Changes in intracellular and cell surface localization of Le× epitope during germ cell differentiation in fetal mice. J. Vet. Med. Sci. 54, 297303.CrossRefGoogle ScholarPubMed
Labosky, P.A., Barlow, D.P. & Hogan, B.L. (1994). Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found. Symp. 182, 157–78.Google ScholarPubMed
Lavoir, M.C., Basrur, P.K. & Betteridge, K.J. (1994). Isolation and identification of germ cells from fetal bovine ovaries. Mol. Reprod. Dev. 37, 413–24.CrossRefGoogle ScholarPubMed
Lawson, K.A. & Hage, W.J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 6891.Google ScholarPubMed
Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–8.CrossRefGoogle ScholarPubMed
Martin, G.R. & Luck, L.F. (1983). Pluripotent cell lines derived from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. In Teratocarcinoma Stem Cells, ed. Silver, L.M., Martin, G.R. & Strickland, S.635–70. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Matsui, Y., Zsebo, K. & Hogan, B.L.M. (1992). Derivation of plunpotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–7.CrossRefGoogle ScholarPubMed
Matsui, Y. (1993). Regulation of murine primordial germ cell (PGC): growth by peptide growth factors. TampakushitsuKakusan-Koso 37, 2935–46.Google Scholar
Mauléon, P. (1967). Différenciation et évolution des cellules sexuelles. 2. La lignée femelle. Arch. Anat. Microsc. 56 (Suppl)., 125–50.Google Scholar
Moens, A., Fléchon, B., Degrolard, J. & Fléchon, J.E. (1994). Ultrastructure and isolation of rabbit gonia. Int. Congr. Electron Miscrosc. 13, 683–4.Google Scholar
Narisawa, S., Hasegawa, H., Watanabe, K. & Millan, J.L. (1994). Stage specific expression of alkaline phosphatase during neural development in the mouse. Dev. Dynamics 201, 227–35.CrossRefGoogle ScholarPubMed
Odor, D.L. & Blandau, R.J. (1969). Ultrastructural studies on fetal and early postnatal mouse ovaries. II. Cytodifferentiation. Am. J. Anat. 125, 177216.CrossRefGoogle ScholarPubMed
Pelliniemi, L.J. (1976). Ultrastructure of the indifferent gonad in male and female pig embryos. Tissue Cell 8, 163–74.CrossRefGoogle ScholarPubMed
Pesce, M. & De Felici, M. (1994). Apoptosis in mouse primordial germ cells: a study by transmission and scanning electron microscope. Anat. Embryol. 189, 435–40.CrossRefGoogle ScholarPubMed
Reima, I., Lehtonen, E., Virtanen, I. & Fléchon, J.E. (1993). Cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54, 3545.CrossRefGoogle ScholarPubMed
Resnick, J.L., Bixler, L.S., Gheng, L. & Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 850–1.CrossRefGoogle ScholarPubMed
Solter, D. & Knowles, B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–9.CrossRefGoogle ScholarPubMed
Spiegelman, M. & Bennett, D. (1973). A light and electron-microscopic study of primordial germ cells in the early mouse embryo. J. Embryol. Exp. Morphol. 30, 97118.Google ScholarPubMed
Stewart, C. & Burke, B. (1987). Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51, 383–92.CrossRefGoogle Scholar
Stewart, C.L., Gadi, I. & Bhatt, H. (1994). Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–8.CrossRefGoogle ScholarPubMed
Stott, D. & Wylie, C. (1986). Invasive behaviour of mouse primordial germ cells in vitro. J. Cell Sci. 86, 133–44.CrossRefGoogle ScholarPubMed
Talbot, N.C., Pwell, A.M. & Rexroad, C.E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42, 3552.CrossRefGoogle ScholarPubMed
Thomson, J.A., Kalishman, J., Gobs, T.G., Durning, M., Harris, C.P., Becker, R.A. & Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–8.CrossRefGoogle ScholarPubMed
Wartenberg, H., Kinsky, I., Viebahn, C. & Schmolke, C. (1991). Fine structural characteristics of testicular cord formation in the developing rabbit gonad. J. Electron. Microsc. Tech. 19, 133–57.CrossRefGoogle ScholarPubMed
Wu, J.C., Gregory, C.W. & De Philip, R.M. (1993). Expression of E-cadherin in immature rat and mouse testis and in rat Sertoli cell cultures. Biol. Reprod. 49, 1353–61.CrossRefGoogle ScholarPubMed
Ylänne, J. & Virtanen, I. (1989). The Mr 140000 fibronectin complex in normal and virus-transformed human fibroblast and in fibrosarcoma cells: identical localization and function. Int. j. Cancer 43, 1126–36.CrossRefGoogle Scholar
Yoshinaga, K., Muramatsu, H. & Muramatsu, T. (1991). Immunohistochemical localization of the carbohydrate antigen 4C9 in the mouse embryo: a reliable marker of mouse primordial germ cells. Differentiation 48, 7582.CrossRefGoogle ScholarPubMed
Zamboni, L. & Merchant, H. (1973). The fine morphology of mouse primordial germ cells in extragonodal locations. Am. J. Anat. 137, 299336.CrossRefGoogle Scholar