Article contents
Toxicity of marine pollutants on the ascidian oocyte physiology: an electrophysiological approach
Published online by Cambridge University Press: 13 December 2017
Summary
In marine animals with external fertilization, gametes are released into seawater where fertilization and embryo development occur. Consequently, pollutants introduced into the marine environment by human activities may affect gametes and embryos. These xenobiotics can alter cell physiology with consequent reduction of fertilization success. Here the adverse effects on the reproductive processes of the marine invertebrate Ciona intestinalis (ascidian) of different xenobiotics: lead, zinc, an organic tin compound and a phenylurea herbicide were evaluated. By using the electrophysiological technique of whole-cell voltage clamping, the effects of these compounds on the mature oocyte plasma membrane electrical properties and the electrical events of fertilization were tested by calculating the concentration that induced 50% normal larval formation (EC50). The results demonstrated that sodium currents in mature oocytes were reduced in a concentration-dependent manner by all tested xenobiotics, with the lowest EC50 value for lead. In contrast, fertilization current frequencies were differently affected by zinc and organic tin compound. Toxicity tests on gametes demonstrated that sperm fertilizing capability and fertilization oocyte competence were not altered by xenobiotics, whereas fertilization was inhibited in zinc solution and underwent a reduction in organic tin compound solution (EC50 value of 1.7 µM). Furthermore, fertilized oocytes resulted in a low percentage of normal larvae with an EC50 value of 0.90 µM. This study shows that reproductive processes of ascidians are highly sensitive to xenobiotics suggesting that they may be considered a reliable biomarker and that ascidians are suitable model organisms to assess marine environmental quality.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
- 12
- Cited by