Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T15:01:40.376Z Has data issue: false hasContentIssue false

Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae)

Published online by Cambridge University Press:  01 August 2006

Alexandre Ninhaus-Silveira*
Affiliation:
Universidade Estadual Paulista (UNESP), Depto. de Biologia e Zootecnia, Ilha Solteira, São Paulo, Brazil.
Fausto Foresti
Affiliation:
Universidade Estadual Paulista (UNESP), Depto. de Morfologia, Botucatu, São Paulo, Brazil.
Alexandre de Azevedo
Affiliation:
Universidade Estadual Paulista (UNESP), Depto. de Morfologia, Botucatu, São Paulo, Brazil.
*
All correspondence to: A. Ninhaus-Silveira, Departamento de Biologia e Zootecnia, Universidade Estadual Paulista/Ilha Solteira, Av. Brasil, 56, Centro, Postal Box 31, CEP: 15385-000, Ilha Solteira, São Paulo, Brazil. Tel/Fax: +55 02118 3743-1285/3743-1186. e-mail: [email protected]

Summary

This survey was performed to characterize the embryogenesis of Prochilodus lineatus. Seven stages of embryo development were identified – zygote, cleavage, blastula, gastrula, segmentation, larval and hatching – after a period of incubation of 22 h (24 °C) or 14 h (28 °C). The following cleavage pattern was identified: the first plane was vertical (2 blastomeres); the second was vertical and perpendicular to the first (4 blastomeres); the third was vertical and parallel to the first (4 × 2); the fourth cleavage was vertical and parallel to the second (4 × 4); the fifth was vertical and parallel to the first (4 × 8); and the sixth cleavage was horizontal (64 blastomeres). At the blastula stage (3.0–4.0 h (24 °C); 1.66–2.0 h (28 °C)) irregular spaces were detected and periblast structuring was initiated. At the gastrula stage (4.0–8.0 h (24 °C); 3.0–6.0 h (28 °C)) the epiboly, convergence and cell movements, as well as the formation of embryonic layers, had begun. The segmentation stage (10.0–15.0 h (24 °C); 7.0–10.0 h (28 °C)) was characterized by a rudimentary formation of organs and systems (somites, optic vesicle and intestinal delimitation). The embryo at the larval stage (16.0–21.0 h (24 °C); 11.0–13.0 h (28 °C)) showed a free tail, more than 25 somites, an optic vesicle and a ready-to-hatch larval shape. The blastomeres at cleavage stage had disorganized nuclei indicating high mitotic activity. At gastrula, the blastomeres and the periblast had euchromatic nuclei and a large number of mitochondria and vesicles. The yolk was organized into globose sacs, which were dispersed into small pieces prior to absorption.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001). Embryonic development of the ‘piabanha’, Brycon insignis, (Steindachner, 1876) (Pisces; Characidae). Bol. Inst. Pesca 27, 21–8.Google Scholar
Arezon, A., Lemos, C.A. & Bohrer, M.B.C. (2002). The influence of temperature on the embryonic development of the annual fish, Cynolebias melanotaenia (Cyprinodontiformes; Rivulidae). Braz. J. Biol. 62 (4b), 18.Google Scholar
Brasil, D.F., Nakaghi, L.S.O., Leme dos Santos, H.S., Quagio-Grassiotto, I. & Foresti, F. (2002). Estudo morfológico dos primeiros momentos da fertilização em curimbatá Prochilodus lineatus (Valenciennes, 1836). [online], CIVA 2002. Available from: http://www.civa2002.org/, 733–47.Google Scholar
Brummett, A.R. & Dumont, J.N. (1978). Kupffer's vesicle in Fundulus heteroclitus: a scanning and transmission electron microscope study. Tissue Cell 10, 1122.CrossRefGoogle ScholarPubMed
Cardoso, E.L., Alves, M.S.D., Ferreira, R.M.A. & Godinho, H.P. (1995). Embryogenesis of the neotropical freshwater siluriform Pseudoplatystoma coruscans. Aquat. Living Res. 8, 343–6.CrossRefGoogle Scholar
Castellani, L.R., Tse, H.G., Leme dos Santos, H.S. & Faria, R.H.S. (1994). Desenvolvimento embrionário do curimbatá, Prochilodus lineatus (Valenciennes, 1836) (Cypriniformes, Prochilodontidae). Rev. Bras. Ciênc. Morfol. 11, 99105.Google Scholar
Corrêa e Castro, R.M. (1990). Revisão taxonômica da família Prochilodontidae (Ostariophysi: Characiformes). Thesis, São Paulo, Instituto de Biociências, Universidade de São Paulo.Google Scholar
Eckmann, R. (1984). Induced reproduction in Brycon cf. erythropterus. Aquaculture 38, 370–82.CrossRefGoogle Scholar
Flores, J.C.B., Araiza, M.A.F. & Valle, M.R.G. (2002). Desarrollo embrionario de Ctenopharyngodon idellus (Carpa herbívora). [online], CIVA2002. Available from: http://www.civa2002.org, 792–7.Google Scholar
Fowler, H.W. (1954). Os peixes de água doce do Brasil. Arq. Zool. 2, 1400.Google Scholar
Ganeco, L.N. (2003). Análise dos ovos de piracanjuba, Brycon orbignyanos (Valenciennes, 1849), durante a fertilização e o desenvolvimento embrionário, sob condições de reprodução induzida. Masters degree, Universidade Estadual Paulista, Jaboticabal.Google Scholar
Gilbert, S.F. (1991). Developmental Biology. Sunderland, MA: Sinauer Associates.Google Scholar
Godinho, H.M., Romagosa, E., Kavamoto, E.T., Cestarolli, M., Ranzani, M.J.T. & Narahara, M.Y. (1988). Estudos morfológicos e reprodução induzida do curimbatá, Prochilodus scrofa, Steindacher, 1881, mantido em condições de cultivo experimental. In Anais do 6° Simpósio Latino-Americano e do 5° Simpósio Brasileiro de Aquicultura, pp. 346–54. Florianópolis: ABRAq.Google Scholar
Godoy, M.P. (1975). Peixes do Brasil, Subordem Characoidei, Bacia do Rio Mogi Guassu, 1st edn. Piracicaba: Franciscana.Google Scholar
Hisaoka, K.K. & Firlit, C.F. (1960). Further studies on the embryonic development of the zebrafish, Brachidanio rerio (Hamilton-Buchanan). J. Morphol. 107, 205–25.CrossRefGoogle Scholar
Kimmel, C.B. & Law, R.D. (1985). Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev. Biol. 108, 8693.CrossRefGoogle ScholarPubMed
Kimmel, C.B., Ballard, W.W., Kimmel, S.R. & Ullmann, B. (1995). Stages of embryonic development of zebrafish. Dev. Dyn. 203, 253310.CrossRefGoogle Scholar
Lagler, K.F. (1959). Freshwater Fishery Biology, 2nd edn. Dubuque: W.M.C. Brown.Google Scholar
Lagler, K.F., Bardach, J.E., Miller, R.R. & Passino, D.R.M. (1977). Icthyology, 2nd edn. New York: Wiley.Google Scholar
Leme dos Santos, H.S. & Azoubel, R. (1996). Embriologia comparada. Jaboticabal: FUNEP.Google Scholar
Long, W.L. & Ballard, W.W. (1976). Normal embryonic stages of the white suckers, Catostomus commersoni. Copeia 2, 342–51.CrossRefGoogle Scholar
Matkovic, M.V., Cussac, V.E., Cukier, M., Guerrero, G.A. & Maggese, M.C. (1985). Desarrolo embrionário de Rhamdia sapo (Valenciennes, 1840) Eigenmann y Eigenmann, 1888 (Pisces; Pimelodidae). I. Segmentación morfogenesis y organogenesis temprana. Rev. Bras. Biol. 45, 3050.Google Scholar
Morrison, C.M., Miyake, T. & Wright, J. Jr (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces; Cichlidae). J. Morphol. 247, 172–95.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (1999). Ovos e larvas de peixes de água doce, desenvolvimento e manual de identificação. Maringá: UEM/Nupélia.Google Scholar
Reynolds, E.S. (1963). The use of lead citrate at high pH an electron-opaque stain for electron microscopy. J. Cell Biol. 17, 208–15.CrossRefGoogle ScholarPubMed
Ribeiro, C.R., Leme dos Santos, H.S. & Bolzan, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (Pacu, Piaractus mesopotâmicus, Tambaqui, Colossoma macropomum e o híbrido Tambacu). Rev. Bras. Biol. 55, 6578.Google Scholar
Romagosa, E., Narahara, M.Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the matrinxã, Brycon cephalus (Pisces; Characidae). Bol. Inst. Pesca 27, 2732.Google Scholar
Shardo, J.D. (1995). Comparative embryology of teleostean fishes. I. Development and staging of the American shad, Alosa sapissima (Wilson 1811). J. Morphol. 225, 125–67.CrossRefGoogle ScholarPubMed
Silveira, A.N. (2000). Caracterização espermática, preservação criogênica do sêmen e fertilidade do matrinxã, Brycon cephalus (Günther, 1860). Masters degree, Instituto de Biociências, Universidade Estadual Paulista, Botucatu.Google Scholar
Silveira, R.B. (2001). Alguns aspectos da reprodução e do desenvolvimento de cavalos-marinhos. In Embriologia, 2nd edn (ed. Garcia, S.M.L. & Fernandes, C.G.), pp. 212–22, Porto Alegre: Artmed Editora.Google Scholar
Stoss, J. & Donaldson, E.M. (1983). Studies on cryopreservation of eggs from rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch). Aquaculture 31, 5165.CrossRefGoogle Scholar
Trinkaus, J.P. (1984). Mechanism of Fundulus epiboly: a current review. Am. Zool. 24, 673–88.CrossRefGoogle Scholar
Watson, M.L. (1958). Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4, 58.CrossRefGoogle ScholarPubMed